1. 向量的概念与线性运算
1.1 向量的概念
引:①:向量中的每个元素称为分量。
②:向量中包含了几个分量,就是几维向量。
(1)行向量:
备注:行向量中的分量一般用逗号分隔开。
(2)列向量:
备注:列向量用的比较多。
(3)零向量:
备注:向量中的所有分量都为0。
(4)向量的转置:
备注:
结果是一个标量。
(5)向量的相等:
两个向量相等,则两个向量的维数相等,对应位置的分量相等。
1.2 向量的线性运算
(1)向量的加减法:
遵守原则:1)两个向量的维数相等;2)对应位置的分量相加减相等。
备注:
①:
(交换律)
②:
(结合律)
③:
(
为同维数的零向量)
④:
(
为同维数的零向量)
⑤:
(2)向量的数乘:
遵守原则:用数乘以向量
,就是用数
乘以向量
内的每一个分量。
备注:
①:
![]()
②:
③:
④:
⑤:
![]()
![]()
= 0 或者
(
为实数,
为向量,0是数,
是零向量)
(3)向量的乘法():
遵守原则:1)向量的列数与向量
的行数必须相等;
2)向量的行数是向量
的行数,向量
的列数是向量
的列数;
3)向量的每行元素分别乘以向量
的每列元素,再做和,结果写到相应的行列坐标位置上。
2. 向量的线性组合和线性表示
(1)设,
,
是一组
维向量,
,
,
是一组常数,则称
为向量组,
,
的一个线性组合,
,
,
称为组合系数。
备注:可联想线性方程组:
①:
为线性方程组中未知量的个数,
为线性方程组中方程的个数。
②:
,
,
是线性方程组中系数的组合,
,
,
是线性方程组中未知量的组合。
(2)设,
,
,
都是
维向量,若存在常数
,
,
,使得关系式
成立,则称向量是向量组
,
,
的线性组合,也称向量
可由向量组