Levenshtein 距离,又称编辑距离,指的是两个字符串之间,由一个转换成另一个所需的最少编辑操作次数。许可的编辑操作包括将一个字符替换成另一个字符,插入一个字符,删除一个字符。编辑距离的算法是首先由俄国科学家Levenshtein提出的,故又叫Levenshtein Distance。
Ex:
字符串A:abcdefg
字符串B: abcdef
通过增加或是删掉字符”g”的方式达到目的。这两种方案都需要一次操作。把这个操作所需要的次数定义为两个字符串的距离。
要求:
给定任意两个字符串,写出一个算法计算它们的编辑距离。
请实现如下接口
/* 功能:计算两个字符串的距离
- 输入: 字符串A和字符串B
- 输出:无
- 返回:如果成功计算出字符串的距离,否则返回-1
*/
public static int calStringDistance (String charA, String charB)
{
return 0;
}
输入描述:
输入两个字符串
输出描述:
得到计算结果
示例1
输入
abcdefg
abcdef
输出
1
解题思路:
1.若str1或str2中有一个长度为0,则返回另外一个长度不为0的字符串的长度。
2.str1、str2的长度分别为len1,len2,构造一个大小为len1+1*len2+1的字符数组arry[len1+1][len2+1],对第一列和第一行的字符分别初始化为0…len1,和0…len2;
3.对arry中的arry[i][j]元素分别进行赋值,如果str1[i-1]==str2[j-1],则temp为0,否则为1
赋值为arry[i-1][j]+1,arry[i][j-1]+1,arry[i-1][j-1]+temp中的最小值,直到arry中的所有元素全部赋值完毕
4.返回arry最后一个元素arry[m][n],就是结果。
注意以下代码牛客网可以通过,但vs里数组需要常量