解线性方程组——追赶法解三对角方程组 | 北太天元 or matlab

本文介绍了追赶法解决三对角线性方程组的过程,通过逐行和逐列更新系数来逐步求解。并通过Matlab函数实现,并与Gauss列主元消去法进行了时间消耗对比,展示了追赶法在高阶方程组中的优势。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、问题描述

对于线性方程组
A x = b , A = ( b 1 c 1 a 2 b 2 c 2 ⋱ ⋱ ⋱ ⋱ ⋱ ⋱ a n − 1 b n − 1 c n − 1 a n b n ) , b = ( f 1 f 2 ⋮ f n ) Ax=b,\quad A=\begin{pmatrix}b_1&c_1&&&&\\a_2&b_2&c_2&&&\\&\ddots&\ddots&\ddots&& \\&&\ddots&\ddots&\ddots& \\&&&a_{n-1}&b_{n-1}&c_{n-1}\\&&&&a_n&b_n\end{pmatrix},\quad b=\begin{pmatrix} f_1\\f_2\\ \vdots\\ f_n \end{pmatrix} Ax=b,A= b1a2c1b2c2an1bn1ancn1bn ,b= f1f2fn

其中
{ ∣ b 1 ∣ > ∣ c 1 ∣ > 0 ∣ b n ∣ > ∣ a n ∣ > 0 ∣ b i ∣ ≥ ∣ a i ∣ + ∣ c i ∣ , a i c i ≠ 0 , i = 2 , 3 , ⋯ n − 1 \begin{cases} \begin{aligned}&\quad|b_1|>|c_1|>0\\&\quad|b_n|>|a_n|>0\\&\quad|b_i|\geq|a_i|+|c_i|,\quad a_ic_i\neq0,i=2,3,\cdots n-1\end{aligned} \end{cases} b1>c1>0bn>an>0biai+ci,aici=0,i=2,3,n1

二、追赶法解三对角方程组

A = ( b 1 c 1 a 2 b 2 c 2 ⋱ ⋱ ⋱ a n − 1 b n − 1 c n − 1 a n b n ) , L = ( 1 l 2 1 l 3 ⋱ ⋱ 1 l n 1 ) , U = ( u 1 d 1 u 2 d 2 ⋱ ⋱ u n − 1 d n − 1 u n ) \begin{equation*} A=\begin{pmatrix}b_1&c_1\\a_2&b_2&c_2\\&\ddots&\ddots&\ddots\\&&a_{n-1}&b_{n-1}&c_{n-1}\\&&&a_n&b_n\end{pmatrix}, {L}=\begin{pmatrix}1\\l_2&1\\&l_3&\ddots\\&&\ddots&1\\&&&l_n&1\end{pmatrix},{U}=\begin{pmatrix}u_1&d_1\\&u_2&d_2\\&&\ddots&\ddots\\&&&u_{n-1}&d_{n-1}\\&&&&u_n\end{pmatrix} \end{equation*} A= b1a2

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

清水折木

谢谢前辈的鼓励,我会继续加油的

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值