Discerning and Resolving Knowledge Conflicts through Adaptive Decoding with Contextual Information-Entropy Constraint
----
通过上下文信息熵约束的自适应解码来识别和解决知识冲突
中国科学院自动化研究所复杂系统认知与决策智能实验室
2中国科学院大学人工智能学院
3北京人工智能研究院
4云知声人工智能科技有限公司
摘要
大型语言模型在预训练过程中内化了大量的参数知识。同时,现实的应用程序需要外部上下文知识来帮助底层任务的模型。这引发了一个被称为知识冲突的关键困境,即上下文知识与参数知识发生冲突。然而,现有的解码工作专门用于解决知识冲突,并且在没有冲突的情况下可能会无意中降低性能。在本文中,我们提出了一种自适应解码方法,称为上下文信息熵约束解码(COIECD),以识别知识冲突是否发生并解决它们。它可以提高模型对冲突上下文的忠实度,同时在非冲突上下文中保持高性能。我们的实验表明,COIECD 在现实数据集中的知识冲突方面表现出强大的性能和鲁棒性。代码可用。
1 简介
大型语言模型 (LLM) 的特点是参数内含大量知识(Petroni 等人,2019;Geva 等人,2021b;Roberts 等人,2020),在各个领域开创了众多突破(Vaswani 等人)等人,2017 年;Devlin 等人,2018 年;Brown 等人,2020 年;Chung 等人,2022 年;Touvron 等人,2023 年)。与此同时,LLM与不太流行的事实知识作斗争(Mallen 等人,2023),从根本上无法随着时间的推移而适应(Lazaridou 等人,2021;Kasai 等人,2022)并且容易出现幻觉(Shuster 等人,2022)。 2021)。这些挑战需要通过检索(Shi et al., 2023b)或应用工具(Schick et al., 2023)来纳入非参数知识源。然而,它引发了一个尖锐的困境:Longpre 等人定义的知识冲突。 (2021),其中非参数上下文知识与内部参数知识冲突。先前的工作(Longpre et al., 2021; Chen et al., 2022; Li et al., 2023a; Zhou et al., 2023; Wang et al., 2023c)已经指出,当面对冲突时,较大的模型具有更大的当给定的上下文与模型的参数知识相矛盾时,倾向于忽略给定的上下文。如图 1 所示,由于模型对其参数知识的偏见,它无法在相互冲突的上下文中得出答案。
图1:知识冲突的说明。由于模型对其过时的参数知识的偏见,它无法在最新的上下文中准确地给出答案,这与LM的知识相冲突。
知识冲突解决方法的早期尝试通过数据增强来微调像 T5 (Raffel et al., 2020) 这样的小规模模型,例如 KAFT (Li et al., 2023a) 和 DisentQA (Neeman et al., 2023a) 和 DisentQA (Neeman et al., 2023a)。 ,2023)。这些微调方法存在破坏模型内在语言能力的风险(Dong et al., 2023)。另一系列工作在推理过程中采用了各种解码策略。例如,对比解码(CD)(Li et al., 2023b; Wang et al., 2023a)利用上下文影响的差异对模型高概率单词的概率分布进行解码。另一种代表性方法是上下文感知解码(CAD)(Shi et al., 2023a),它利用 CD 来放大所有单词的上下文分布。然而,在没有冲突的情况下,现有的解码方法可能会无意中降低性能。如图 2 所示,虽然这些方法有效地缓解了知识冲突对参数记忆的过度依赖,但它们的性能在从 NaturalQuestions 数据集派生的非冲突数据上恶化。通常,这些方法通常在实验场景下工作,其中所有上下文都被假定为固有冲突,而不考虑现实场景中是否存在冲突。因此,我们认为核心问题在于:如何在推理过程中辨别上下文和LLM之间的知识冲突。
为此,本文提出了一种自适应解码方法,称为上下文信息熵约束解码(COIECD),旨在识别知识冲突并对冲突和非冲突数据采用不同的策略。鉴于 LLM 往往经过良好校准(Kadavath 等人,2022)并且它们的世代通常位于狭窄且几乎平坦的熵带中(Arora 等人,2023),我们采用了一种自适应解码策略,该策略仅减轻当 LLM 生成的token违反熵信息约束(带)时会发生冲突。具体来说,在识别知识冲突时,