一、递归
概念:函数自身调用自身
二、时间复杂度
概念:执行的次数和问题规模之间的函数关系,它定量描述了该算法的运行时间。
(1)只考虑高阶项,低阶项直接丢弃;
(2)不要系数
三、空间复杂度
概念:实现该算法所需要的额外辅助空间和问题规模直接的函数关系
例题:有五个小孩在一起聊天,第五个小孩比第四个小孩大两岁,第四个小孩比第三个小孩大两岁,第三个小孩比第二个小孩大两岁,第二个小孩比第一个小孩大两岁,第一个小孩10岁,问第五个小孩多大?
#include<stdio.h>
//递归
int Age(int n) //时间复杂度:O(n) 空间复杂度:O(n)
{
int tmp = 10;
if(n==1) //边界值
return 10;
else
{
tmp = Age(n-1) + 2; //前进段
return tmp;
}
}
//简化成如下代码
int Age(int n)
{
if(n==1)
return 10;
else
return Age(n-1) + 2;
}
//递归求和1+2+3+...+n
int Sum(int n) //时间复杂度:O(n) 空间复杂度:O(n)
{
if(n<=1)
return n;
else
return Sum(n-1) + n;
}
//递归求阶乘
int Fac(int n) //时间复杂度:O(n^1/2)
{
if(n==1 || n==0)
return 1;
else
return Fac(n-1) * n;
}
//递归求斐波那契数列Fibon
//Fibon(0) = 1,Fibon(1) = 1,Fibon(n) = Fibon(n-1) + Fibon(n-2)
//使用递归最失败的例子
int Fibon(int n)
{
if(n==0 || n==1)
return 1;
else
return Fibon(n-1) +Fibon(n-2);
}
//使用循环求Fibon数列
int Fibon(int n) //s时间复杂度:O(n) 空间复杂度:O(1)
{
int f1=1;
int f2=1;
int f3=1;
for(int i = 2;i < n;i++)
{
f3 = f1 + f2;
f2 = f3;
f1 = f2;
}
return f3;
}
int main()
{
printf("%d\n",Age(5)); //求第5个孩子的年龄
printf("%d\n",Age(100)); //求第100个孩子的年龄
printf("%d\n",Sum(100)); //100以内求和
printf("%d\n",Sum(20)); //20以内求和
printf("%d\n",Fac(100)); //100以内求阶乘
printf("%d\n",Fac(10)); //10以内求阶乘
printf("%d\n",Fibon(100)); //求100项斐波那契数列
printf("%d\n",Fibon(10)); //求10项斐波那契数列
return 0;
}