递归、时间复杂度和空间复杂度

本文探讨了递归的概念,即函数自身调用自身。接着,详细阐述了时间复杂度,它是衡量算法运行时间与问题规模的关系,主要关注高阶项并忽略低阶项和系数。最后,通过一个例子讲解了空间复杂度,帮助理解算法在运行过程中所需的内存空间。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、递归

概念:函数自身调用自身

二、时间复杂度

概念:执行的次数和问题规模之间的函数关系,它定量描述了该算法的运行时间。

          (1)只考虑高阶项,低阶项直接丢弃;

          (2)不要系数

三、空间复杂度

概念:实现该算法所需要的额外辅助空间和问题规模直接的函数关系

例题:有五个小孩在一起聊天,第五个小孩比第四个小孩大两岁,第四个小孩比第三个小孩大两岁,第三个小孩比第二个小孩大两岁,第二个小孩比第一个小孩大两岁,第一个小孩10岁,问第五个小孩多大?

#include<stdio.h>
//递归
int Age(int n)              //时间复杂度:O(n) 空间复杂度:O(n)
{
   int tmp = 10;
   if(n==1)                 //边界值
      return 10; 
   else
   {
       tmp = Age(n-1) + 2;  //前进段
       return tmp;
   }
}
//简化成如下代码
int Age(int n)

{
   if(n==1)
      return 10;
   else
      return Age(n-1) + 2;
}

//递归求和1+2+3+...+n
int Sum(int n) //时间复杂度:O(n) 空间复杂度:O(n)
{
   if(n<=1)
      return n;
   else
      return Sum(n-1) + n;
}

//递归求阶乘   
int Fac(int n)    //时间复杂度:O(n^1/2)
{
   if(n==1 || n==0)
      return 1;
   else
      return Fac(n-1) * n;
}

//递归求斐波那契数列Fibon
//Fibon(0) = 1,Fibon(1) = 1,Fibon(n) = Fibon(n-1) + Fibon(n-2)
//使用递归最失败的例子
int Fibon(int n)
{
   if(n==0 || n==1)
      return 1;
   else
      return Fibon(n-1) +Fibon(n-2);
}

//使用循环求Fibon数列
int Fibon(int n)    //s时间复杂度:O(n) 空间复杂度:O(1)
{
   int f1=1;
   int f2=1;
   int f3=1;
   for(int i = 2;i < n;i++)
   {
      f3 = f1 + f2;
      f2 = f3;
      f1 = f2;
   }
   return f3;
}

int main()
{
   printf("%d\n",Age(5));     //求第5个孩子的年龄
   printf("%d\n",Age(100));   //求第100个孩子的年龄

   printf("%d\n",Sum(100));   //100以内求和
   printf("%d\n",Sum(20));    //20以内求和

   printf("%d\n",Fac(100));   //100以内求阶乘
   printf("%d\n",Fac(10));    //10以内求阶乘

   printf("%d\n",Fibon(100)); //求100项斐波那契数列
   printf("%d\n",Fibon(10));  //求10项斐波那契数列

   return 0;
}








评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值