【NLP】NO3:文本可视化

本文探讨了自然语言处理(NLP)中常用的文本可视化方法,包括词云和ER图。通过分词、去除停用词和统计词频,可以创建具有洞察力的词云。此外,ER图在展示实体关系方面也十分有用。文章还提到了前端可视化工具Echarts,用于实现这些视觉效果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

常用可视化图:词云、分布图、Document Cards、树状图、网络图、力导向图、叠式图、Word Tree、地理热力图、ThemeRiver、SparkClouds、TextFlow、基于矩阵视图的情感分析可视化。

前端可视化网站:百度的 Echarts https://echarts.baidu.com/echarts2/doc/example.html

一、词云

分词、去停用词、统计词频、绘制词云

#引入所需要的包
import jieba
import pandas as pd
import numpy as np
from scipy.misc import imread
from wordcloud import WordCloud,ImageColorGenerator #词云显示
import matplotlib.pyplot as plt # plt 用于显示图片


#定义文件路径
dir =  "/Users/jianliu/Downloads/chat1/wordcloud/"
#定义语料文件路径
file = "".join([dir,"z_m.csv"])
#定义停用词文件路径
stop_words = "".join([dir,"stopwords.txt"])
#定义wordcloud中字体文件的路径
simhei = "".join([dir,"simhei.ttf"])
#读取语料
df = pd.read_csv(file, encoding='utf-8')
#如果存在nan,删除
df.dropna(inplace=True)
#将content一列转为list
content=df.content.values.tolist()
#用jieba进行分词操作
segment=[]
for line in content:
    try:
        segs=jieba.cut_for_search
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值