众所周知,动态规划的典型案例-背包问题实在竞赛中经常出现的,运用模板dp[][]来记录每次动规出来的结果往往不满足JVM的空间复杂度要求。
算法优化思路:寻常条件下,用dp[][]二维数组记录在特定的重量下装入的最优情况。其递推公式为F[i][v] = max{ F[i-1][v], F[i-1][v-C[i]] + W[i]}; 不难看出,对于记录的情况无非F[i-1][v]以及F[i-1][v-C[i]] + W[i]两种情况,因此F[i][j]的值只与其之前的值有关。基于此种特性,我们将每次伴随物品数量的装载,运用倒序导入的方式对数组dp【】进行更新,最终得到最优值。
以下为0-1背包问题基于空间复杂度要求的条件下做出的算法优化
package com.nowcoder;
import java.util.Scanner;
public class CharmBracelet {
private static int maxValue2(int N, int V, int[] W, int[] C) {
// 使用一维数组来做 降低了空间复杂度
// 这里F[v] 代表v空间的背包所能达到的最大价值
int[] dp = new int[V+1];
for (int i=1; i <= N; i++) {
for (int j=V; j >=W[i]; j--) {
dp[j] = Math.max(dp[j], dp[j-W[i]]+C[i]);
}
}
return dp[V];
}
public static void main(String[] args) {
Scanner sc=new Scanner(System.in);
int n=sc.nextInt();
int m=sc.nextInt();
int wi[]=new int[n+1];
int di[]=new int[n+1];
int dp[