关于0-1背包的动规实现以及空间复杂度的优化算法

本文探讨了动态规划中的经典问题——0-1背包问题,指出传统二维数组记录方式可能导致空间复杂度过高。通过分析递推公式,提出采用一维数组并倒序遍历的优化策略,降低空间复杂度。详细介绍了优化后的0-1背包问题算法,以实现空间效率的提升。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

众所周知,动态规划的典型案例-背包问题实在竞赛中经常出现的,运用模板dp[][]来记录每次动规出来的结果往往不满足JVM的空间复杂度要求。

算法优化思路:寻常条件下,用dp[][]二维数组记录在特定的重量下装入的最优情况。其递推公式为F[i][v] = max{ F[i-1][v], F[i-1][v-C[i]] + W[i]}; 不难看出,对于记录的情况无非F[i-1][v]以及F[i-1][v-C[i]] + W[i]两种情况,因此F[i][j]的值只与其之前的值有关。基于此种特性,我们将每次伴随物品数量的装载,运用倒序导入的方式对数组dp【】进行更新,最终得到最优值。

以下为0-1背包问题基于空间复杂度要求的条件下做出的算法优化

package com.nowcoder;

import java.util.Scanner;

public class CharmBracelet {
	private static int maxValue2(int N, int V, int[] W, int[] C) {
		// 使用一维数组来做 降低了空间复杂度
		// 这里F[v] 代表v空间的背包所能达到的最大价值
		int[] dp = new int[V+1];

		for (int i=1; i <= N; i++) {
			for (int j=V; j >=W[i]; j--) {
				dp[j] = Math.max(dp[j], dp[j-W[i]]+C[i]);
			}
		}
		return dp[V];
	}
 
	public static void main(String[] args) {
		Scanner sc=new Scanner(System.in);
		int n=sc.nextInt();
		int m=sc.nextInt();
		int wi[]=new int[n+1];
		int di[]=new int[n+1];
		int dp[
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值