牛马学习数据结构 第九天~ (二叉搜索树)

时隔很多很多天又回来打卡了,坚持真的是一件很难的事情。

概念:左子树的值全部都小于根节点的值,右子树的值全部都大于根结点的值,左子树和右子树也是同样的原理。遍历的方式一般为中序遍历  即  :  左  -->根  -->右   。遍历完成后就是一个单调递增的函数。

1、递增顺序搜索树

给你一棵二叉搜索树,请 按中序遍历 将其重新排列为一棵递增顺序搜索树,使树中最左边的节点成为树的根节点,并且每个节点没有左子节点,只有一个右子节点。

示例 1:

输入:root = [5,3,6,2,4,null,8,1,null,null,null,7,9]
输出:[1,null,2,null,3,null,4,null,5,null,6,null,7,null,8,null,9]

示例 2:

输入:root = [5,1,7]
输出:[1,null,5,null,7]

提示:

  • 树中节点数的取值范围是 [1, 100]
  • 0 <= Node.val <= 1000
/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode() : val(0), left(nullptr), right(nullptr) {}
 *     TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
 *     TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
 * };
 */
class Solution {
    vector<int> ret ;
    void inoder(TreeNode *root){
        if(root){
            inoder(root->left);
            ret.push_back(root->val);
            inoder(root->right);
        }
    }
public:
    TreeNode* increasingBST(TreeNode* root) {
        ret.clear();
        inoder(root);
        TreeNode *head = new TreeNode(-1);
        TreeNode *cret = head;
        for(int i=0;i<ret.size();i++){
            TreeNode *t = new TreeNode(ret[i]);
            cret->right = t;
            cret = t;
        }
        return head->right;
    }
};

//下面是迭代的方法
/*
class Solution {
    TreeNode *curt;
    void inorder(TreeNode *root){
        if(root){
            inorder(root->left);
            curt->right = root;
            root->left = NULL;
            curt = root;
            inorder(root->right);  
        } 
    }
public:
    TreeNode* increasingBST(TreeNode* root) {
        TreeNode *head = new TreeNode(-1);
        curt = head;
        inorder(root);
        return head->right;
    }
};
*/

 2、二叉搜索树中的搜索

给定二叉搜索树(BST)的根节点 root 和一个整数值 val

你需要在 BST 中找到节点值等于 val 的节点。 返回以该节点为根的子树。 如果节点不存在,则返回 null 。

示例 1:

输入:root = [4,2,7,1,3], val = 2
输出:[2,1,3]

示例 2:

输入:root = [4,2,7,1,3], val = 5
输出:[]

提示:

  • 树中节点数在 [1, 5000] 范围内
  • 1 <= Node.val <= 107
  • root 是二叉搜索树
  • 1 <= val <= 107
/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     struct TreeNode *left;
 *     struct TreeNode *right;
 * };
 */
struct TreeNode* searchBST(struct TreeNode* root, int val) {
    if(root == NULL){
        return NULL;
    }
    if(root->val > val){
       return searchBST(root->left,val);
    }else if(root->val < val){
        return searchBST(root->right,val);
    }
    return root;
}

 3、二叉搜索数范围和(左右子树与根和)

给定二叉搜索树的根结点 root,返回值位于范围 [low, high] 之间的所有结点的值的和。

示例 1:

输入:root = [10,5,15,3,7,null,18], low = 7, high = 15
输出:32

示例 2:

输入:root = [10,5,15,3,7,13,18,1,null,6], low = 6, high = 10
输出:23

提示:

  • 树中节点数目在范围 [1, 2 * 104] 内
  • 1 <= Node.val <= 105
  • 1 <= low <= high <= 105
  • 所有 Node.val 互不相同
/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     struct TreeNode *left;
 *     struct TreeNode *right;
 * };
 */
int rangeSumBST(struct TreeNode* root, int low, int high) {
    if(root == NULL){
        return 0;
    }
    int sum = 0;
    if(low <= root->val && root->val <= high){
        sum += root->val;
    }  
    sum += rangeSumBST(root->left,low,high);
    sum += rangeSumBST(root->right,low,high);
    return sum;
}

 4、二叉搜索树的最小绝对差

给你一个二叉搜索树的根节点 root ,返回 树中任意两不同节点值之间的最小差值 。

差值是一个正数,其数值等于两值之差的绝对值。

示例 1:

输入:root = [4,2,6,1,3]
输出:1

示例 2:

输入:root = [1,0,48,null,null,12,49]
输出:1

提示:

  • 树中节点的数目范围是 [2, 104]
  • 0 <= Node.val <= 105
/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode() : val(0), left(nullptr), right(nullptr) {}
 *     TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
 *     TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
 * };
 */
class Solution {
    int pre;
    int ret;
    void inorder(TreeNode *root){
        if(root){
            inorder(root->left);
            ret = min(ret,(root->val - pre));
            pre = root->val;
            inorder(root->right);
        }
        
    }
public:
    int getMinimumDifference(TreeNode* root) {
        pre = -100000000;
        ret = 100000000;
        inorder(root);
        return ret; 
    }
};

5、 两数之和 IV - 输入二叉搜索树(双指针,迭代)

给定一个二叉搜索树的 根节点 root 和一个整数 k , 请判断该二叉搜索树中是否存在两个节点它们的值之和等于 k 。假设二叉搜索树中节点的值均唯一。

示例 1:

输入: root = [8,6,10,5,7,9,11], k = 12
输出: true
解释: 节点 5 和节点 7 之和等于 12

示例 2:

输入: root = [8,6,10,5,7,9,11], k = 22
输出: false
解释: 不存在两个节点值之和为 22 的节点

提示:

  • 二叉树的节点个数的范围是  [1, 104].
  • -104 <= Node.val <= 104
  • root 为二叉搜索树
  • -105 <= k <= 105

 

/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode() : val(0), left(nullptr), right(nullptr) {}
 *     TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
 *     TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
 * };
 */
/*常规做法或者叫迭代 O(n2)*/
class Solution {
    vector <int> ret;
    void inorder(TreeNode *root){
        if(root){
            inorder(root->left);
            ret.push_back(root->val);
            inorder(root->right);
        }
    }
public:
    bool findTarget(TreeNode* root, int k) {
        inorder(root);
        for(int i=0; i<ret.size();++i){
            for(int j=i+1; j<ret.size(); ++j){
                if(ret[j] + ret[i] == k) return true;
            }
        }
        return false;
    }
};

/*双指针方式 O(n)*/
class Solution {
    vector <int> ret;
    void inorder(TreeNode *root){
        if(root){
            inorder(root->left);
            ret.push_back(root->val);
            inorder(root->right);
        }
    }
public:
    bool findTarget(TreeNode* root, int k) {
        ret.clear();
        inorder(root);
        int l=0, r = ret.size() - 1;
        while(l < r){
            if(ret[l] + ret[r] > k) {
                r--;
            }else if(ret[l] + ret[r] < k){
                l++;
            }else{
                return true;
            }
        }
        return false;
    }
};

6、二叉搜索树中的众数

给你一个含重复值的二叉搜索树(BST)的根节点 root ,找出并返回 BST 中的所有 众数(即,出现频率最高的元素)。

如果树中有不止一个众数,可以按 任意顺序 返回。

假定 BST 满足如下定义:

  • 结点左子树中所含节点的值 小于等于 当前节点的值
  • 结点右子树中所含节点的值 大于等于 当前节点的值
  • 左子树和右子树都是二叉搜索树

示例 1:

输入:root = [1,null,2,2]
输出:[2]

示例 2:

输入:root = [0]
输出:[0]

提示:

  • 树中节点的数目在范围 [1, 104] 内
  • -105 <= Node.val <= 105
/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode() : val(0), left(nullptr), right(nullptr) {}
 *     TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
 *     TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
 * };
 */
class Solution {
    int pre, cnt;
    int maxcnt;
    vector<int> ret;
    void vect(TreeNode *root){
        if(root->val == pre){
            cnt++;
        }else {
            pre = root->val;
            cnt = 1;
        }
        if(cnt > maxcnt){
            ret.clear();
            maxcnt = cnt;
            ret.push_back(root->val);
        }else if(cnt == maxcnt){
            ret.push_back(root->val);
        }
    }
    void inorder(TreeNode *root){
        if(root){
        inorder(root->left);
        vect(root);
        inorder(root->right);
        }
    }
public:
    vector<int> findMode(TreeNode* root) {
        ret.clear();
        pre=-100000000;
        maxcnt = cnt = 0;
        inorder(root);
        return ret;
    }
};

7、恢复二叉搜索树(核心:寻找逆序对)

给你二叉搜索树的根节点 root ,该树中的 恰好 两个节点的值被错误地交换。请在不改变其结构的情况下,恢复这棵树 

示例 1:

输入:root = [1,3,null,null,2]
输出:[3,1,null,null,2]
解释:3 不能是 1 的左孩子,因为 3 > 1 。交换 1 和 3 使二叉搜索树有效。

示例 2:

输入:root = [3,1,4,null,null,2]
输出:[2,1,4,null,null,3]
解释:2 不能在 3 的右子树中,因为 2 < 3 。交换 2 和 3 使二叉搜索树有效。

提示:

  • 树上节点的数目在范围 [2, 1000] 内
  • -231 <= Node.val <= 231 - 1
/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode() : val(0), left(nullptr), right(nullptr) {}
 *     TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
 *     TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
 * };
 */
class Solution {
    vector<TreeNode*> ret;
    void inorder(TreeNode *root){
        if(root){
            inorder(root->left);
            ret.push_back(root);
            inorder(root->right);
        } 
    }
public:
// 1 2 (7 4) 5 (6 3) 8 9
    void recoverTree(TreeNode* root) {
        ret.clear();
        inorder(root);
        TreeNode *x = NULL;
        TreeNode *y = NULL;
        for(int i=0; i<ret.size()-1; ++i){
            if(ret[i]->val > ret[i+1]->val){
                y = ret[i+1];
                if(x == NULL){
                    x = ret[i];
                }
            }
        }
        if( x && y ){
            int tmp = x->val;
            x->val = y->val;
            y->val = tmp;
        }
    }
};

 

8、删除二叉搜索树中的节点

给定一个二叉搜索树的根节点 root 和一个值 key,删除二叉搜索树中的 key 对应的节点,并保证二叉搜索树的性质不变。返回二叉搜索树(有可能被更新)的根节点的引用。

一般来说,删除节点可分为两个步骤:

  1. 首先找到需要删除的节点;
  2. 如果找到了,删除它。

示例 1:

输入:root = [5,3,6,2,4,null,7], key = 3
输出:[5,4,6,2,null,null,7]
解释:给定需要删除的节点值是 3,所以我们首先找到 3 这个节点,然后删除它。
一个正确的答案是 [5,4,6,2,null,null,7], 如下图所示。
另一个正确答案是 [5,2,6,null,4,null,7]。


示例 2:

输入: root = [5,3,6,2,4,null,7], key = 0
输出: [5,3,6,2,4,null,7]
解释: 二叉树不包含值为 0 的节点

示例 3:

输入: root = [], key = 0
输出: []

提示:

  • 节点数的范围 [0, 104].
  • -105 <= Node.val <= 105
  • 节点值唯一
  • root 是合法的二叉搜索树
  • -105 <= key <= 105
/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode() : val(0), left(nullptr), right(nullptr) {}
 *     TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
 *     TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
 * };
 */
class Solution {
    int finMin(TreeNode *root){
        if(root->left){
            return finMin(root->left);//递归寻找最小根节点
        }
        return root->val;
    }
    TreeNode *delRoot(TreeNode *root){
        if(root->left == NULL){
            TreeNode *delNode = root;
            TreeNode *retNode = root->right;//右子树继承根节点
            delete delNode;
            return retNode;
        }else if(root->right == NULL){
            TreeNode *delNode = root;
            TreeNode *retNode = root->left;//左子树继承根节点
            delete delNode;
            return retNode;
        }else{
            TreeNode *retNode = new TreeNode(0);
            retNode->val = finMin(root->right); //找到右子树中最小值
            retNode->right = deleteNode(root->right,retNode->val);
            retNode->left = root->left;
            return retNode;
        }
        return NULL;//左右子树都为空时直接返回空即为删除了节点
    }
public:
    TreeNode* deleteNode(TreeNode* root, int key) {
        if(root == NULL){
            return NULL;
        }
        if(root->val > key){//key小于根节点向左找
            root->left = deleteNode(root->left,key);
        }else if(root->val < key){//key大于根节点向右找
            root->right = deleteNode(root->right,key);
        }else {
            return delRoot(root);//key等于
        }
        return root;
    }
};

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值