from langchain.vectorstores import Weaviate
from langchain.embeddings.base import Embeddings
from langchain.chains import RetrievalQA
from langchain.llms import Ollama
import weaviate
import os
import requests
# docker run -d -p 8080:8080 --name weaviate semitechnologies/weaviate:latest
#
# 根据CSDN博客2025年1月22日发布的文章,这四个向量数据库在GitHub上的Star数量排行榜如下:
# 1. **Milvus**:26.2k
# 2. **Qdrant**:17k
# 3. **Chroma**:9.6k
# 4. **Weaviate**:9.2k
#
# 不过,GitHub上项目的Star数量会随时间变化而有所不同,想要获取最新、准确的排名,建议直接访问各项目的GitHub页面进行查看。
# 方式一:手动查询GitHub
# 你可以直接访问各个项目在GitHub上的主页来查看Star数量,以下是各项目对应的GitHub链接:
#
# Milvus:https://github.com/milvus-io/milvus
# Chroma:https://github.com/chroma-core/chroma
# Weaviate:https://github.com/semi-technologies/weaviate
# Qdrant:https://github.com/qdrant/qdrant
# 在每个项目的GitHub页面上,页面上方会显示该项目的Star数量,你可以记录下这些数量并进行排序。
#
# 方式二:使用第三方工具或网站
# 有一些第三方工具和网站可以实时追踪GitHub项目的热度,包括Star数量,并提供排行榜功能。例如:
#
# GitHub Trending:https://github.com/trending 虽然它主要展示近期热门项目,但你可以在搜索框中输入项目名称查看其详细信息。
# 使用 Ollama 的 nomic-embed-text 生成嵌入
class NomicEmbedText(Embeddings):
def __init__(self, base_url="http://127.0.0.1:11434"):
self.base_url = base_url
def embed_query(self, text):
response = requests.post(
f"{self.base_url}/api/embeddings",
json={"model": "nomic-embed-text:v1.5", "prompt": text}
)
if response.status_code != 200:
raise ValueError(f"嵌入生成失败: {response.text}")
return response.json()["embedding"]
def embed_documents(self, texts):
embeddings = []
for text in texts:
embedding = self.embed_query(text)
embeddings.append(embedding)
return embeddings
# 初始化 Weaviate 客户端
def init_weaviate_client(url="http://localhost:8080"):
client = weaviate.Client(url)
return client
# 创建 Weaviate 向量存储
def create_weaviate_vector_store(chunks, index_name):
embeddings = NomicEmbedText()
texts = [chunk.page_content for chunk in chunks]
metadatas = [chunk.metadata for chunk in chunks]
# 创建 Weaviate 索引
client = init_weaviate_client()
# 使用 Weaviate 的默认嵌入模型(需要提前配置)
vector_store = Weaviate.from_texts(
texts=texts,
embedding=embeddings, # 这里传入嵌入对象
metadatas=metadatas,
client=client,
index_name=index_name
)
return vector_store
# 加载 Weaviate 向量存储
def load_weaviate_vector_store(index_name):
client = init_weaviate_client()
embeddings = NomicEmbedText()
# 加载 Weaviate 向量存储
vector_store = Weaviate(
client=client,
index_name=index_name,
embedding=embeddings # 这里传入嵌入对象
)
return vector_store
# 设置 RAG 管道
def setup_rag_pipeline(vector_store):
llm = Ollama(model="deepseek-r1:1.5b", base_url="http://127.0.0.1:11434")
qa_pipeline = RetrievalQA.from_chain_type(
llm=llm,
chain_type="stuff",
retriever=vector_store.as_retriever(search_kwargs={"k": 3})
)
return qa_pipeline
# 查询 RAG 管道
def query_rag_pipeline(qa_pipeline, question):
result = qa_pipeline({"query": question})
return result["result"]
# 主函数
def main():
# 1. 创建或加载 Weaviate 向量存储
index_name = "CompanyLaw"
vector_store = load_weaviate_vector_store(index_name)
# 2. 设置 RAG 管道
qa_pipeline = setup_rag_pipeline(vector_store)
# 3. 查询
question = "关于公司法律条款的解释"
answer = query_rag_pipeline(qa_pipeline, question)
print("回答:", answer)
if __name__ == "__main__":
main()