Django+redis+celery 实现异步任务

后台耗时任务会影响前端响应速度,可采用异步任务方式处理。本文介绍了Django中的异步请求,包括同步和异步请求的区别。还阐述了基于Python的分布式任务队列框架Celery的架构,以及在Django中实现Celery的环境、配置、测试代码和运行项目的步骤,同时提及了监控工具flower。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在后台中,可能会有一些耗时的任务,会影响到前端响应速度。为加快响应,可使用异步任务的方式在后台执行耗时的操作。

一、Django中的异步请求

        Django Web中从一个http请求发起,到获得响应返回html页面的流程大致如下:http请求发起 -- http handling(request解析) -- url mapping(url正则匹配找到对应的View) -- 在View中进行逻辑的处理、数据计算(包括调用Model类进行数据库的增删改查)--将数据推送到template,返回对应的template/response。

同步请求:所有逻辑处理、数据计算任务在View中处理完毕后返回response。在View处理任务时用户处于等待状态,直到页面返回结果。

异步请求:View中先返回response,再在后台处理任务。用户无需等待,可以继续浏览网站。当任务处理完成时,我们可以再告知用户。

二、Celery

        Celery是基于Python开发的一个分布式任务队列框架,支持使用任务队列的方式在分布的机器/进程/线程上执行任务调度。

       上图展示的是Celery的架构,它采用典型的生产者-消费者模式,主要由三部分组成:broker(消息队列)、workers(消费者:处理任务)、backend(存储结果)。实际应用中,用户从Web前端发起一个请求,我们只需要将请求所要处理的任务丢入任务队列broker中,由空闲的worker去处理任务即可,处理的结果会暂存在后台数据库backend中。我们可以在一台机器或多台机器上同时起多个worker进程来实现分布式地并行处理任务。

三、Django中Celery的实现

环境:

  • django:2.1.7
  • celery:3.1.26.post2(Cipater)
  • redis:2.10.6(注意:最新版本是3.2.1,但会报错Unrecoverable error: AttributeError("'str' object has no attribute 'items'"))
  • redis-server:3.2.100

配置:

1、settings.py文件

INSTALLED_APPS = [
    ...

    # celery + redis
    'djcelery',
]

# Celery settings
import djcelery
djcelery.setup_loader()

# celery中间人 redis://redis服务器所在的ip地址:地址/数据库号
BROKER_URL = 'redis://127.0.0.1:6379/0'
# celery结果返回,可用于跟踪结果
CELERY_RESULT_BACKEND = 'redis://127.0.0.1:6379/0'
# celery内容等消息的格式设置
CELERY_ACCEPT_CONTENT = ['application/json']
CELERY_TASK_SERIALIZER = 'json'
CELERY_RESULT_SERIALIZER = 'json'
CELERY_SCHEDULER = 'djcelery.schedulers.DatabaseScheduler'
# celery时区设置,使用TIME_ZONE
CELERY_TIMEZONE = TIME_ZONE

2、在项目文件夹下增加celery.py文件:

from __future__ import absolute_import

import os
from celery import Celery
from django.conf import settings


# 设置环境变量
os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'mysite.settings')

# 实例化Celery,网上很多教程都是未设置broker导致启动失败
app = Celery('mysite', broker='redis://127.0.0.1:6379/0')

# 使用django的settings文件配置celery
app.config_from_object('django.conf:settings')

# Celery加载所有注册的应用
app.autodiscover_tasks(lambda: settings.INSTALLED_APPS)

3、项目的__init__.py文件修改:

from __future__ import absolute_import

from .celery import app as celery_app

__all__ = ['celery_app']

4、测试代码

在一个app中增加tasks.py文件(关于task,并不是一定要把所有的task放在tasks.py,可以放在其他类里面,只要在函数上加@task即可)

import time
from celery import task


@task
def test(a, b):
    print('这是任务开始')
    print(a+b)
    time.sleep(10)
    print('这是任务结束')

app中view代码增加:

from . import tasks
def test_view(request, *args, **kwargs):
    tasks.test.delay(1, 2)
    result = {'code': 0, 'msg': '这是一个后台任务'}
    return HttpResponse(json.dumps(result, ensure_ascii=False), content_type='application/json')

app中url增加:

path('test/', views.test_view, name='test_view'),

四、运行项目

1、python manage.py runserver

2、celery -A mysite worker --pool=solo -l info

python manage.py celery -A celery worker --loglevel=info 是错误的

3、访问test

 

另外,Celery提供了一个工具flower,将各个任务的执行情况、各个worker的健康状态进行监控并以可视化的方式展现,如下图所示:

  Django下实现的方式如下: 

  1. 安装flower:pip install flowr

  2. 启动flower(默认会启动一个webserver,端口为5555):python manage.py celery flower

  3. 进入http://localhost:5555即可查看。

参考:

https://www.cnblogs.com/znicy/p/5626040.html

https://www.jb51.net/article/159215.htm

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值