python-批量letterbox_resize图片

import numpy as np
import cv2
import os

def letterbox_resize(img, new_width, new_height, interp=0):
    '''
    Letterbox resize. keep the original aspect ratio in the resized image.
    '''
    ori_height, ori_width = img.shape[:2]

    resize_ratio = min(new_width / ori_width, new_height / ori_height)

    resize_w = int(resize_ratio * ori_width)
    resize_h = int(resize_ratio * ori_height)

    img = cv2.resize(img, (resize_w, resize_h), interpolation=interp)
    image_padded = np.full((new_height, new_width, 3), 128, np.uint8)

    dw = int((new_width - resize_w) / 2)
    dh = int((new_height - resize_h) / 2)

    image_padded[dh: resize_h + dh, dw: resize_w + dw, :] = img

    return image_padded

path = ./Annotations/" 
filelist = os.listdir(path)
filelist.sort()

for file in filelist:
    print(file)
    
count=0
for file in filelist:
    img= cv2.imread("./Annotations/"+file)
    outimg=letterbox_resize(img,1920,1080,interp=0)
    path='./VOC2007/' + str(count) + '.jpg'
    cv2.imwrite(path, outimg)
    count+=1
import os import numpy as np import torch from PIL import Image from facenet import Facenet # 导入 Facenet 类 from utils.utils import resize_image, preprocess_input # 导入必要的工具函数 class FaceBank: def __init__(self, facebank_dir='facebank'): """ 初始化人脸数据库 :param facebank_dir: 人脸数据库存储路径 """ self.facebank_dir = facebank_dir self.facebank = {} # 人脸数据库,key 为文件名,value 为特征向量 self.model = Facenet() # 加载 FaceNet 模型 self.next_id = 0 # 人脸数据库中的下一个 ID # 如果 facebank 文件夹不存在,则创建 if not os.path.exists(self.facebank_dir): os.makedirs(self.facebank_dir) # 加载已有的人脸数据库 self.load_facebank() def load_facebank(self): """ 加载已有的人脸数据库 """ for filename in os.listdir(self.facebank_dir): if filename.endswith('.jpg') or filename.endswith('.png'): face_path = os.path.join(self.facebank_dir, filename) face_image = Image.open(face_path) face_feature = self.get_embedding(face_image) # 获取人脸特征向量 self.facebank[filename] = face_feature self.next_id = max(self.next_id, int(filename.split('.')[0]) + 1) def get_embedding(self, image): """ 获取人脸图像的特征向量 :param image: 人脸图像 (PIL.Image) :return: 特征向量 (numpy.ndarray) """ # 使用 Facenet 的 detect_image 方法获取特征向量 with torch.no_grad(): # 调整图像大小并预处理 image = resize_image(image, [self.model.input_shape[1], self.model.input_shape[0]], letterbox_image=self.model.letterbox_image) photo = torch.from_numpy(np.expand_dims(np.transpose(preprocess_input(np.array(image, np.float32)), (2, 0, 1)), 0)) if self.model.cuda: photo = photo.cuda() output = self.model.net(photo).cpu().numpy() return output def add_to_facebank(self, image): """ 将人脸图像加入数据库 :param image: 人脸图像 (PIL.Image
最新发布
03-13
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值