图神经网络实战——基于矩阵分解原理的图嵌入算法

图神经网络实战——基于矩阵分解原理的图嵌入算法

1. 矩阵分解

矩阵分解是一种广泛应用于不同领域的通用分解技术。许多图嵌入算法使用该技术来计算图的节点嵌入。
我们将首先概述矩阵分解的基本原理,随后重点介绍两种使用矩阵分解构建图的节点嵌入的算法,分别为图分解 (Graph Factorization, GF) 和高阶邻近保留嵌入 (Higher-Order Proximity Preserved Embedding, HOPE)。
设输入数据为矩阵 W ∈ R m × n W ∈ ℝ^{m×n} W

评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

盼小辉丶

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值