图神经网络实战——基于矩阵分解原理的图嵌入算法 1. 矩阵分解 2. 图分解 3. 高阶邻接保留嵌入 4. 带有全局结构信息的图表示 相关链接 1. 矩阵分解 矩阵分解是一种广泛应用于不同领域的通用分解技术。许多图嵌入算法使用该技术来计算图的节点嵌入。 我们将首先概述矩阵分解的基本原理,随后重点介绍两种使用矩阵分解构建图的节点嵌入的算法,分别为图分解 (Graph Factorization, GF) 和高阶邻近保留嵌入 (Higher-Order Proximity Preserved Embedding, HOPE)。 设输入数据为矩阵 W ∈ R m × n W ∈ ℝ^{m×n} W∈