Datawhale零基础入门CV_Task4模型训练与验证

本文详细介绍了一个深度学习模型的训练与验证流程,包括数据加载、模型定义、损失函数选择、优化器设置、训练与验证代码实现,以及如何保存最佳模型。同时提供了多个Epoch的训练与验证代码示例,最后推荐了深度学习领域的阅读资源。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1 思维导图

task4 思维导图

2 补充内容

1 模型训练与验证代码

train_loader = torch.utils.data.DataLoader(
    train_dataset,
    batch_size=10, 
    shuffle=True, 
    num_workers=10, 
)
    
val_loader = torch.utils.data.DataLoader(
    val_dataset,
    batch_size=10, 
    shuffle=False, 
    num_workers=10, 
)

model = SVHN_Model1()
criterion = nn.CrossEntropyLoss (size_average=False)
optimizer = torch.optim.Adam(model.parameters(), 0.001)
best_loss = 1000.0
for epoch in range(20):
    print('Epoch: ', epoch)

    train(train_loader, model, criterion, optimizer, epoch)
    val_loss = validate(val_loader, model, criterion)
    
    # 记录下验证集精度
    if val_loss < best_loss:
        best_loss = val_loss
        torch.save(model.state_dict(), './model.pt')

2 每个Epoch的训练代码

def train(train_loader, model, criterion, optimizer, epoch):
    # 切换模型为训练模式
    model.train()

    for i, (input, target) in enumerate(train_loader):
        c0, c1, c2, c3, c4, c5 = model(data[0])
        loss = criterion(c0, data[1][:, 0]) + \
                criterion(c1, data[1][:, 1]) + \
                criterion(c2, data[1][:, 2]) + \
                criterion(c3, data[1][:, 3]) + \
                criterion(c4, data[1][:, 4]) + \
                criterion(c5, data[1][:, 5])
        loss /= 6
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()

3 每个Epoch的验证代码

def validate(val_loader, model, criterion):
    # 切换模型为预测模型
    model.eval()
    val_loss = []

    # 不记录模型梯度信息
    with torch.no_grad():
        for i, (input, target) in enumerate(val_loader):
            c0, c1, c2, c3, c4, c5 = model(data[0])
            loss = criterion(c0, data[1][:, 0]) + \
                    criterion(c1, data[1][:, 1]) + \
                    criterion(c2, data[1][:, 2]) + \
                    criterion(c3, data[1][:, 3]) + \
                    criterion(c4, data[1][:, 4]) + \
                    criterion(c5, data[1][:, 5])
            loss /= 6
            val_loss.append(loss.item())
    return np.mean(val_loss)

4 深度学习推荐阅读链接

CNNTricks
A Recipe for Training Neural Networks

3 学习资料

Datawhale 零基础入门CV赛事-Task4 模型训练与验证

内容概要:本文深入探讨了DevOps流程落地中自动化测试监控体系的构建,强调二者是保障软件质量和系统稳定性的重要支柱。自动化测试涵盖从单元测试到端到端测试的全流程自动化,而监控体系则通过实时采集和分析系统数据,及时发现并解决问题。文章介绍了测试金字塔模型的应用、监控指标的分层设计、测试生产环境的一致性构建以及告警策略的精细化设置等核心技巧。此外,还提供了基于Python和Prometheus的具体代码案例,包括自动化接口测试脚本和监控指标暴露的实现,展示了如何在实际项目中应用这些技术和方法。 适合人群:对DevOps有一定了解,从事软件开发、运维或测试工作的技术人员,特别是那些希望提升自动化测试和监控能力的从业者。 使用场景及目标:①高并发业务系统中,模拟大规模用户请求,验证系统抗压能力和稳定性;②关键业务流程保障,确保金融交易、医疗数据处理等敏感业务的合规性和可追溯性;③微服务架构系统下,通过契约测试和分布式链路追踪,保证服务间的兼容性和故障快速定位。 阅读建议:本文不仅提供了理论指导,还有详细的代码示例,建议读者结合自身项目的实际情况,逐步实践文中提到的技术和方法,特别是在构建自动化测试框架和监控系统时,关注环境一致性、测试覆盖率和性能指标等方面。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值