Java 计算前缀乘积和前缀和

实现说明:

  1. 前缀和数组多预留1位(索引0初始化为0)便于区间计算
  2. 前缀乘积数组索引0初始化为1避免零值影响
  3. 查询方法将原始0-based索引转换为1-based处理
  4. 时间复杂度:预处理O(n),查询O(1)

注意点:

  1. 乘积查询需确保区间内不含0,否则需特殊处理
  2. 大数情况建议改用long类型防溢出
  3. 二维扩展可参考类似原理实现

public class PrefixUtils {
    // 计算前缀和数组(索引从1开始)
    public static int[] computePrefixSum(int[] nums) {
        int[] prefixSum = new int[nums.length + 1];
        for (int i = 1; i <= nums.length; i++) {
            prefixSum[i] = prefixSum[i - 1] + nums[i - 1];
        }
        return prefixSum;
    }

    // 计算前缀乘积数组(索引从1开始)
    public static int[] computePrefixProduct(int[] nums) {
        int[] prefixProduct = new int[nums.length + 1];
        prefixProduct[0] = 1; // 初始化为1避免乘积为0
        for (int i = 1; i <= nums.length; i++) {
            prefixProduct[i] = prefixProduct[i - 1] * nums[i - 1];
        }
        return prefixProduct;
    }

    // 查询区间和[left, right](闭区间,0-based)
    public static int querySum(int[] prefixSum, int left, int right) {
        return prefixSum[right + 1] - prefixSum[left];
    }

    // 查询区间乘积[left, right](闭区间,0-based)
    public static int queryProduct(int[] prefixProduct, int left, int right) {
        return prefixProduct[right + 1] / prefixProduct[left];
    }

    public static void main(String[] args) {
        int[] testArr = {2, 3, 4, 5};
        
        // 前缀和测试
        int[] sumArr = computePrefixSum(testArr);
        System.out.println("区间[1,3]的和: " + querySum(sumArr, 1, 3)); // 输出12
        
        // 前缀乘积测试
        int[] productArr = computePrefixProduct(testArr);
        System.out.println("区间[0,2]的乘积: " + queryProduct(productArr, 0, 2)); // 输出24
    }
}





<think>好的,我现在需要帮用户解决关于Java实现逆序乘积式的问题。首先,用户提到的“逆序乘积式”这个术语,我需要确认它的具体定义。根据用户提供的引用,特别是引用[4]中的前缀和后缀乘积的方法,可能用户指的是类似LeetCode上的“除自身以外数组的乘积”问题,也就是不使用除法,通过计算每个元素的前缀和后缀乘积来得到结果。 接下来,我需要查看用户提供的引用内容。引用[4]中的确提到了使用前缀和后缀数组的方法,并且提供了Java代码示例。这可能就是用户所说的逆序乘积式,即逆序处理数组来计算后缀乘积,再与前缀乘积相乘。因此,用户可能希望得到一个类似的Java实现,但需要明确是否是同一问题。 然后,用户的问题是关于逆序乘积式的Java实现示例。结合引用中的信息,我需要确认逆序乘积式的定义是否与引用[4]中的问题相同。如果是的话,那么可以直接参考该引用的代码,并给出详细解释。但用户提到的是“逆序乘积式”,可能需要更明确的定义,比如是否涉及到数组的逆序处理或者其他操作。 考虑到用户可能没有明确说明,但根据引用[4],可以推测用户需要的是计算数组中每个元素除自身外其他元素乘积算法,也就是通过前缀和后缀乘积的方法,其中后缀乘积可能涉及逆序遍历数组。因此,需要将这个过程详细解释,并提供Java代码示例。 接下来,我需要确保回答的结构符合用户的要求:结构清晰,分步骤解释,代码正确,并且引用相关的内容。同时,用户要求生成相关问题,我需要根据主题提出相关问题。 最后,检查LaTeX格式是否正确,确保所有数学表达式用$...$或$$...$$包裹,并且回答使用中文。同时,引用部分要正确标注,如引用[4]中的方法。</think>### Java实现逆序乘积算法详解 逆序乘积式指通过逆序处理数组元素的方式计算乘积关系的算法,典型应用场景是"除自身以外数组的乘积"问题。这里以LeetCode 238题为例,结合引用[4]的解决方案进行实现。 #### 算法原理 1. **前缀乘积**:$prefix[i]$表示数组前$i$个元素的乘积 2. **后缀乘积**:$suffix[i]$表示数组后$n-i$个元素的乘积 3. **结果公式**:$result[i] = prefix[i] \times suffix[i]$ 数学表达式可写为: $$ result[i] = (\prod_{k=0}^{i-1} nums[k]) \times (\prod_{k=i+1}^{n-1} nums[k]) $$ #### 实现步骤 1. 创建前缀乘积数组(正向遍历) 2. 创建后缀乘积数组(逆向遍历) 3. 合并计算结果 ```java public class ProductCalculator { public static int[] productExceptSelf(int[] nums) { int n = nums.length; int[] result = new int[n]; // 计算前缀乘积(正向遍历) int[] prefix = new int[n]; prefix[0] = 1; for (int i = 1; i < n; i++) { prefix[i] = prefix[i - 1] * nums[i - 1]; } // 计算后缀乘积并直接计算结果(逆向遍历) int suffix = 1; for (int i = n - 1; i >= 0; i--) { result[i
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值