卷积神经网络CNN-高级
AlexNet:现代神经网络起源
结构源自ImageNet比赛。
1. AlexNet结构
在卷积的时候,我们会依据这个公式来提取特征图: 【img_size - filter_size】/stride +1 = new_feture_size
- INPUT:224×224×3(RGB图像),实际上会经过预处理变为227×227×3的大小;
- CONV1:使用的96个大小规格为11×11的卷积核,stride为4,pad为0,进行特征提取,(ps:图上之所以看起来是48个是由于采用了2个GPU服务器处理,每一个服务器上承担了48个),得到两个55×55×96大小的特征图,([227-11] / 4 + 1 )= 55;
- MAX POOL1:使用3×3大小的filters,stride为2,进行最大池化,得到27×27×96池化后的特征图;
- NORM1:归一化层;
- CONV2:使用的256个大小规格为5×5的卷积核,stride为1,pad为2,进行特征提取,得到两个