SLAM笔记(六)直接法介绍

本文介绍了SLAM中的直接法,与间接法的主要区别在于直接法不依赖特征点提取与匹配,而是直接利用像素信息计算相机运动。直接法假设同一三维点在不同视角的灰度值不变,通过最小化像素误差进行优化。直接法分为稀疏和稠密两种,其优点在于能够利用更多的图像信息,但在某些特定条件下性能可能会下降。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本章整理自高翔的SLAM十四讲之《直接法的原理与实现》以及PAMI上的《Direct Sparse Odometry》

1

之前总结的方法都需要先从图片中提取特征点并进行匹配,然后进行优化求解,这类方法称为特征法间接法。由于提取、匹配的过程中耗时很大,因此有人提出是否能不计算关键点或描述子,直接根据图像的像素信息来计算相机运动,这类方法称为直接法。随着一批不需提取特征的方法,如LSD(选取整幅图像中有梯度的部分来采用直接法,这种方法称为半稠密方法(simi-dense)),SVO(选取关键点来采用直接法,这类方法称为稀疏方法(sparse)),直接法渐露其自身优势。

1.1间接法与直接法的区别:

这里写图片描述
除了提取和匹配耗时,在使用特征点时,也忽略了除特征点以外的所有信息,因此丢弃了很多可能有用的图像信息.
间接法通过最小化几何误差geometric error)(因为预先得到的点或光流向量都是几何度量,常用的有重投影误差(projection error)等)来进行优化从而得到相机运动;直接法通过最小化测量误差(photometirc error,即像素之间的误差).直接法的好处:直接法让单独一个点不具备识别意义,而是将大量的点组织起来,因此它的表达是一种细粒度的几何表示。

1.2 直接法的基本假设

同一空间三维点在各个视角下测到的灰度值不变(因此假设所在平面是漫反射,没有遮挡,没有光照变化);

1.3 直接法原理

这里写图片描述
I1(Cpi)I2(CRpi+t分别为pi在图像对应点的灰度值。
随后用非线性优化求解最小测量误差J,得到目标函数:

minJ=t=1N||
<think>嗯,用户正在寻找关于《SLAM14讲》的笔记或总结。我需要先理解用户的具体需求。SLAM是同时定位与建图的技术,广泛应用于机器人领域。用户可能在学习SLAM,需要参考资料来辅助理解。 首先,我需要检查提供的引用内容。引用[1]到[4]都是关于《视觉SLAM14讲》的笔记,涉及不同章节的内容。例如,引用[1]提到了SLAM的基本问题前三章笔记,引用[2][3]讨论了单目双目相机的模型以及初始化问题,引用[4]则涉及滑动窗口位姿图优化。这些内容应该能帮助用户找到所需的笔记。 接下来,用户可能希望得到结构化的回答,包括相关笔记的整理推荐资源。需要按照系统指令,正确使用LaTeX格式,并生成相关问题。同时,回答要引用提供的资料,比如在提到单目SLAM时引用[2][3]。 需要确保回答清晰,分点列出已有的笔记内容推荐的资源链接。此外,生成的问题应围绕SLAM14讲的核心知识点,比如传感器比较、单目初始化、后端优化方等。同时,检查是否有遗漏的信息,比如其他章节的笔记或外部资源,如GitHub仓库或B站课程。 最后,要确认所有引用正确标注,例如在讨论三角测量时添加[^2],在滑动窗口部分添加[^4]。确保LaTeX语正确,例如数学公式用$...$或$$...$$包裹,如单目模型中的$z$变化问题。</think>### 关于《视觉SLAM14讲》的笔记与总结整理 #### 一、已有的笔记内容 1. **SLAM基础概念与单目初始化** - SLAM需要解决机器人定位与环境建图两大问题,单目相机因缺少深度信息($z$变化时成像关系仍成立),需通过初始化引入平移运动恢复尺度[^3][^2]。 - 三角测量是单目SLAM中恢复深度的关键方,但初始化时需保证足够的平移量。 2. **传感器模型与标定** - 双目相机通过视差直接计算深度,公式为: $$ z = \frac{f \cdot b}{d} $$ 其中$b$为基线距离,$d$为视差值。 3. **后端优化方** - **滑动窗口**:通过保留最近$N$个关键帧控制BA规模,需处理新增/删除关键帧时的结构变化[^4]。 - **位姿图优化**:在BA优化后固定路标点,仅优化相机位姿节点相对运动约束,降低计算复杂度。 --- #### 二、推荐学习资源 1. **开源笔记与代码** - GitHub仓库[《 slam_in_autolabor 》](https://github.com/gaoxiang12/slambook)提供各章公式推导与代码实现。 - 知乎专栏[《 深蓝学院视觉SLAM十四讲笔记 》](https://zhuanlan.zhihu.com/p/146430644)包含核心知识点整理。 2. **视频课程** - B站课程[《 视觉SLAM14讲-高翔 》](https://www.bilibili.com/video/BV16t411g7FR)配套代码讲解,适合实践学习。 ---
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值