- 博客(1106)
- 收藏
- 关注
原创 Mindspore框架RNN实现情况分类
本文介绍了基于RNN的情感分类模型实现过程。使用IMDB影评数据集,通过预训练的Glove词向量进行文本编码,构建包含LSTM层的神经网络模型。详细说明了数据处理流程,包括数据下载、词表构建、序列填充等步骤。模型采用二分类交叉熵损失函数和Adam优化器进行训练,并实现了准确率评估方法。实验结果表明,该模型能有效区分影评的正负面情感,在测试集上取得了良好效果。最后展示了自定义输入的情感预测功能,验证了模型的实用性。整个实现过程体现了RNN在自然语言处理任务中的典型应用。
2025-08-08 10:49:48
790
原创 [MindSpore] 常用视觉变换总结
本文总结了MindSpore中常用的视觉变换类,主要分为两类:基于类的变换(mindspore.dataset.vision)和函数式变换(transforms)。关键变换包括Resize(调整尺寸)、RandomCrop(随机裁剪)、Normalize(标准化)、HWC2CHW(格式转换)等。文章特别提供了ViT/ImageNet和ResNet/CIFAR-10场景下的典型预处理组合建议,如训练时使用RandomCropDecodeResize+RandomHorizontalFlip+Normalize
2025-08-08 10:39:16
336
原创 昇腾算力×自动并行:MindSpore如何重新定义AI训练效率
摘要:MindSpore是华为开源的全场景AI计算框架,支持端边云全场景应用开发,提供模型构建、训练、推理和部署的一体化解决方案。其核心优势包括动静统一执行模式、自动并行分布式训练、昇腾硬件深度优化、原生隐私保护技术及科学智能支持。特别适合大规模AI模型训练、昇腾平台开发、端边云协同场景以及隐私敏感应用,为开发者提供从研究到生产的全流程工具链。
2025-08-08 10:29:03
420
原创 MindSpore图算融合:从计算图到昇腾芯片的极致优化实践
摘要: 本文深入解析MindSpore图算融合技术如何通过编译优化实现AI训练效率的突破性提升。文章系统性地阐述了该技术的三大创新:1)动态图转静态图执行,结合三级计算图优化体系(基础优化/算子融合/硬件映射);2)显存池化技术降低碎片率至3%以下;3)昇腾芯片CUBE指令级优化,实现10.8倍矩阵计算加速。在ResNet-50训练中,该技术通过Conv-BN-ReLU深度融合、显存生命周期优化等策略,最终实现较PyTorch 3.1倍的吞吐量提升。实验基于MindSpore 2.2+Ascend 910B
2025-08-08 10:27:28
739
原创 BERT模型论文解读,并基于MindSpore NLP推理复现
【摘要】昇思MindSpore开源实习活动顺利完成BERT模型论文解读任务,并开启暑期新任务。BERT作为Google提出的预训练NLP模型,通过多层Transformer编码器实现双向上下文建模,其创新点包括:1)遮蔽语言模型(MLM)任务(80%替换为[MASK]);2)下一句预测(NSP)任务;3)预训练-微调范式。相比GPT和ELMo,BERT在GLUE、SQuAD等任务中表现突出,如SQuADv1.1单模型F1达90.9%。实操部分提供了基于MindSpore的情感分类实现方案,包括分词、训练和推
2025-08-08 10:21:48
626
原创 BigBird-Pegasus模型论文解读,并基于MindSpore NLP推理复现
《BigBird-Pegasus:长文本摘要技术的突破性进展》摘要 本文深入解析了Google团队提出的BigBird-Pegasus模型,该模型通过创新性地结合BigBird的稀疏注意力机制和Pegasus的GSG预训练目标,有效解决了长文本处理的计算瓶颈问题。BigBird采用随机注意力、滑动窗口注意力和全局注意力相结合的稀疏化策略,将计算复杂度从O(n²d)降至O(n)。Pegasus则通过模拟摘要生成过程的预训练目标提升文本概括能力。实验表明,该模型在ArXiv、PubMed等长文本数据集上的ROU
2025-08-08 10:20:57
721
原创 基于昇思MindSpore,北京航空航天大学科研团队提出科学智算基础模型OmniArch,实现11类PDE求解性能提升
北京航空航天大学李建欣团队提出科学智算基础模型OmniArch,首次实现单个模型统一求解1D-3D偏微分方程(PDE)的突破。该模型通过三大创新:Fourier编码器统一维度表示、TemporalMask处理多物理量耦合、PDE-Aligner增强物理一致性,克服了传统方法维度受限、计算昂贵等难题。实验显示OmniArch在11类PDE上全面超越专用模型,最高精度提升98.7%,并展现出零样本泛化和上下文学习能力。研究成果被ICML2025接收,相关代码已开源,有望推动科学计算领域的基础模型发展。
2025-08-08 10:16:43
906
原创 昇思MindSpore开源社区上线智谱GLM-4.5与GLM-4.5-Air大模型
智谱AI发布新一代旗舰模型GLM-4.5,在12项评测基准中表现优异,综合排名全球第三、国产第一。该模型通过昇思MindSpore实现小时级迁移,现已开源并提供详细部署指南。GLM-4.5旗舰版需2台16卡服务器部署,Air版则支持单台8卡服务器运行。魔乐社区作为公益AI平台,提供模型托管及下载服务。开发者可通过Docker容器快速体验,并按照指南完成分布式推理服务部署,支持最长32K上下文处理能力。
2025-08-01 16:17:30
588
原创 昇思MindSpore同步首发Qwen3-30B-A3B-Instruct-2507并上线开源社区
通义千问发布Qwen3-235B-A22B-Instruct-2507新版本,在指令遵循、逻辑推理、数学计算等核心能力上显著提升。该模型已在GPQA、AIME25等多个专业测评中展现优异表现。MindSpore版本现已在开源社区上线,支持4卡Atlas800服务器部署,提供完整推理方案。开发者可通过魔乐社区获取60GB模型权重,使用昇思MindSpore提供的Docker镜像快速体验。新版本采用vLLM-MindSpore推理框架,支持32768上下文长度,可通过API服务化部署。开源社区将持续优化模型性能
2025-08-01 16:11:53
722
原创 昇思MindSpore 2.7版本首发“焕新社区” ——全面升级超大规模集群大模型训推技术
2025世界人工智能大会上,中国移动牵头发布"焕新社区",昇思开源社区同步推出MindSpore AI框架2.7版本。新版框架聚焦大模型训练效率、推理性能及系统可视化,实现MoE模型训练性能提升70%、推理吞吐提升15%。中移九天与昇思深度协同,完成超大规模集群训练优化,训练效率提升超30%。新版本在MoE训练架构、大模型推理性能、在线监测工具三大领域实现突破性升级,包含双模式负载均衡、自定义并行机制、极致量化压缩等20余项技术创新。未来昇思将继续开源开放,携手产业伙伴共建AI生态。
2025-08-01 16:08:23
306
原创 ShuffleNet V1 实现食物识别系统综述
本文详细介绍了一个基于ShuffleNetV1架构的食物识别项目,实现了从环境搭建到模型训练的全流程。项目使用MindSpore2.5.0框架,通过分组卷积和通道混洗等轻量级设计,对多种常见食物进行精准分类。数据处理阶段采用随机裁剪、水平翻转等增强方法,训练过程使用Adam优化器和交叉熵损失函数。实验结果表明系统在移动设备上具有良好的应用前景,同时指出了在实时检测、模型优化等方面的改进空间。该研究为移动端食物识别提供了可行的技术方案。
2025-08-01 15:29:34
675
原创 ShuffleNet V2 实现灾害识别系统综述
本文介绍了一个基于ShuffleNetV2的轻量级自然灾害识别系统。该项目使用MindSpore2.5.0框架,通过环境配置、数据增强、模型构建等步骤,实现了对洪水、火灾、地震等灾害图像的高效分类。系统采用分组卷积和通道混洗机制降低计算复杂度,最后通过全局平均池化输出结果。实验表明该方法在移动设备上具有良好的应用前景。文章详细阐述了从数据处理到模型优化的完整流程,并讨论了存在的挑战和未来改进方向,为轻量级灾害识别系统的开发提供了参考。
2025-08-01 15:26:44
607
原创 基于SqueezeNet_Residual模型的细胞识别系统
摘要:本文提出一种基于改进SqueezeNet_Residual算法的细胞类型识别系统,可准确分类嗜碱细胞等5种细胞类型。研究采用MindSpore框架,通过64x64像素图像和64的批量大小进行训练。系统引入残差连接增强Fire模块特征提取能力,结合数据增强策略提升泛化性能。经过50个epoch训练,模型在验证集上达到92.7%的准确率。可视化结果显示系统具有良好分类效果,为生物医学研究提供了有效工具,未来可扩展更多细胞类型支持。
2025-08-01 15:24:10
351
原创 基于SqueezeNet模型的大疆无人机型号识别系统
摘要:本文基于SqueezeNet算法提出了一种大疆无人机型号识别方法。通过MindSpore框架构建轻量级模型,采用包含Inspire等四种机型的图像数据集,经过数据增强和30个epoch训练,验证集准确率达94.5%。SqueezeNet通过Fire模块的"压缩-扩展"结构,在保持80%ImageNet Top-5精度的同时将参数压缩至4.8MB。实验表明该方法能高效识别无人机型号,未来可扩展识别类别并优化实时性能。
2025-08-01 15:23:14
660
原创 基于Vision Transformer模型的军用车辆识别系统
本文提出了一种基于VisionTransformer(ViT)的军用车辆识别方法。通过MindSpore框架实现,采用64x64像素输入图像,使用随机裁剪和翻转等数据增强技术。ViT模型将图像分割为小块并应用自注意力机制,包含PatchEmbedding、位置编码和Transformer编码器等关键组件。训练采用Adam优化器和余弦退火学习率调度,在验证集上取得良好效果。实验结果表明,该方法能有效识别不同类型军用车辆,为未来扩展识别类别、优化模型结构和提升实时性奠定了基础。
2025-08-01 15:21:59
568
原创 基于Xception模型的植物叶子识别系统
本文提出了一种基于Xception模型的植物叶片识别方法,通过深度学习技术实现自动化分类。研究使用MindSpore框架(2.5.0版)构建系统,设置64x64像素图像尺寸和64的批量大小。数据集经GitLFS下载后,采用随机裁剪、水平翻转等数据增强技术提升模型泛化能力。Xception模型利用深度可分离卷积优化计算效率,包含EntryFlow、MiddleFlow和ExitFlow三个模块化组件。训练过程采用Adam优化器和余弦退火调度器,最终验证集准确率达到预期目标。可视化结果显示系统能有效区分不同叶片
2025-08-01 15:20:43
709
原创 基于MindSpore实现贫血症识别系统
本文介绍了一种基于MindSpore框架的贫血症识别方法。通过搭建SqueezeNet_Residual模型,结合数据增强和优化技术,实现了对贫血症图像的高效识别。实验结果表明,该方法在验证集上取得了良好的分类效果。未来可扩展识别类别、优化模型结构并提升实时性。该研究为贫血症自动诊断提供了新思路,展现了深度学习在医疗领域的应用潜力。
2025-08-01 15:18:25
625
原创 基于昇思MindSpore+Orangepi AIpro的FCN图像语义分割
本文介绍了基于昇思MindSpore框架和OrangePi AIpro硬件平台的FCN图像语义分割实现方案。主要内容包括:1)使用PASCAL VOC 2012数据集,通过标准化处理解决图像分辨率不一致问题;2)详细阐述了数据预处理、模型推理和后处理流程,其中模型转换为OM格式以优化性能;3)提供了完整的代码实现,包括ACL资源初始化、图像预处理、模型推理和结果可视化等关键步骤;4)展示了推理过程中的时间消耗分析,包括预处理(0.0047s)、推理(0.6203s)和后处理(15.6167s)各阶段耗时。该
2025-07-25 11:04:18
670
原创 基于昇思MindSpore+Orangepi AIpro的Pix2Pix实现图像转换
摘要:本文介绍了基于昇思MindSpore框架在Orangepi AIpro上实现Pix2Pix图像转换的全流程。主要内容包括:1) 使用MindRecord格式文件作为输入,输出风格转换后的图像;2) 提供模型转换指导,建议在Linux环境下将模型转为OM格式以优化性能;3) 详细代码实现,涵盖ACL资源初始化、数据预处理、模型推理和结果可视化等关键步骤;4) 注意事项包括内存不足问题的解决方案。该实现通过MindSpore数据集接口加载数据,利用ACL进行推理加速,最终使用matplotlib展示转换效
2025-07-25 10:57:06
889
原创 基于昇思MindSpore+Orangepi AIpro的ShuffleNetV1图像分类
本文介绍了基于昇思MindSpore框架在OrangePi AIpro上实现ShuffleNetV1图像分类的完整流程。主要内容包括:1)使用Cifar10数据集进行测试,通过MindSpore的vision模块完成数据预处理;2)将模型转换为om格式以提升推理性能;3)详细展示了代码实现,包含ACL资源初始化、数据加载、模型推理和结果可视化等关键步骤;4)提供了完整的Python代码实现,涵盖数据下载、模型加载、前处理、推理和结果显示全过程。该方案适用于边缘计算设备上的轻量级图像分类任务,为开发者提供了端
2025-07-25 10:44:54
289
原创 基于昇思MindSpore+Orangepi AIpro的CNNCTC文字识别
本文介绍了基于昇思MindSpore框架和Orangepi AIpro的CNNCTC文字识别系统实现。该系统使用ResNet网络提取图像特征,结合CTC(Connectionist Temporal Classification)方法进行文本识别。文章详细说明了模型转换、环境配置、推理实现等关键步骤,包括将训练好的模型转换为OM文件、加载测试图片、执行离线推理等过程。实验结果显示系统成功识别了示例图片中的"PARKING"文字,推理时间仅8.62ms。最后提供了环境变量设置和缓存清理等注
2025-07-25 10:39:44
389
原创 基于昇思MindSpore+Orangepi AIpro的CycleGAN图像风格迁移
摘要:本文介绍了基于昇思MindSpore框架和OrangePi AIpro实现的CycleGAN图像风格迁移方案。主要内容包括:1)使用CycleGAN模型实现apple2orange风格转换;2)模型转换指南,建议在Linux环境下将模型转为om格式;3)详细代码实现流程,包含ACL资源初始化、图像预处理、模型推理和后处理等步骤;4)性能指标显示预处理耗时0.005秒,推理0.109秒,后处理301.2秒;5)完整流程包含资源初始化、图像处理、模型推理及结果可视化等关键环节。该方案为端侧AI图像处理提供
2025-07-25 10:33:43
834
原创 使用模型对曝光不足的输入图片进行HDR效果增强
本文介绍了基于昇腾AI处理器的图像曝光增强功能实现方案。该方案使用HDR效果增强模型对曝光不足的PNG图像进行优化处理。实现流程包括:1)准备阶段获取PB模型文件并转换为OM格式;2)资源初始化设置ACL环境;3)图像预处理(归一化/缩放/颜色转换);4)模型推理执行;5)结果后处理(形状变换/反归一化)并保存输出。系统支持512x512分辨率输入,最终输出增强图像与原图对比展示,并记录处理耗时。完整实现代码已提供,包含模型加载、推理执行和结果可视化等关键功能模块。
2025-07-25 10:26:13
433
原创 MindSpore 的 mindspore.nn模块汇总
MindSpore的mindspore.nn模块提供了多种损失函数,用于衡量模型输出与真实标签的差异。主要损失函数包括:CrossEntropyLoss(多分类)、SoftmaxCrossEntropyWithLogits(带Softmax交叉熵)、MSELoss(均方误差回归)、L1Loss(平均绝对误差)、BCELoss(二元交叉熵)及其带Sigmoid版本BCEWithLogitsLoss,以及NLLLoss(负对数似然)和KLDivLoss(KL散度)。选择原则:二分类用BCEWithLogitsL
2025-07-25 10:15:44
268
原创 [Mindspore]对ViT Attention 的实现
本文介绍了MindSpore中Vision Transformer (ViT) 的关键实现细节。首先展示了Attention模块的实现,包括多头注意力、缩放点积和Dropout等核心组件。重点解析了ViT中的两类嵌入机制:Class Embedding(可学习的cls_token,用于聚合全局信息进行分类)和Position Embedding(为图像块提供位置信息)。通过MindSpore代码示例,详细说明了如何将这两种嵌入与图像块特征结合,形成Transformer的输入序列。文章还提供了数据处理流程图
2025-07-18 17:27:13
557
原创 Conv2d和 Conv2dTranspose的详解和使用
本文介绍了MindSpore框架中的Conv2D和Conv2DTranspose两种卷积操作。Conv2D用于特征提取和下采样,支持多种参数设置;Conv2DTranspose实现上采样功能,常用于图像生成和语义分割。文章详细对比了二者的功能、参数、计算公式及使用场景,并提供了MindSpore的示例代码。Conv2D适用于图像分类、检测等任务,而Conv2DTranspose多用于GAN、U-Net等需要上采样的模型。最后给出了不同模型架构中这两种算子的组合建议。
2025-07-18 17:22:27
952
原创 ConvNeXt 基于卷积神经网络(CNN)的新型视觉骨干网络
ConvNeXt是MetaAI团队2022年提出的新型CNN架构,通过融合Transformer设计理念(如深度可分离卷积、LayerNorm等)显著提升了传统CNN性能。该网络采用分阶段结构,核心模块包含7×7深度可分离卷积和MLP层,在ImageNet分类任务上,ConvNeXt-Tiny以28.6M参数达到82.1%准确率,超越同规模ViT模型。相比传统CNN,它具有训练稳定、部署友好、多任务适应性强等优势,在保持卷积计算效率的同时实现了与Transformer相当的性能。
2025-07-18 17:17:35
430
原创 Vision Transformer(ViT)详解
本文介绍了VisionTransformer(ViT)模型及其MindSpore实现。ViT将Transformer架构应用于图像分类,通过图像分块嵌入、Class Token和位置编码处理图像数据,利用多头自注意力和MLP模块构建Transformer编码器。文章详细展示了ViT各组件(如PatchEmbed、Attention模块等)的MindSpore代码实现,并说明了模型调用方法。ViT具有高精度、全局依赖捕捉能力强和易于迁移学习等优势,适用于图像分类、目标检测等多种视觉任务,同时支持多种规模变体。
2025-07-18 17:15:18
381
原创 [MindSpore] Swin Transformer的原理解析
SwinTransformer是一种层次化视觉Transformer模型,由微软亚洲研究院于2021年提出。其核心创新在于窗口自注意力机制(W-MSA)和移位窗口机制(SW-MSA),通过将图像划分为局部窗口进行计算,显著降低了传统ViT的计算复杂度。该模型采用类似CNN的多阶段结构逐步下采样,结合局部窗口注意力与跨窗口信息交互,在图像分类、目标检测、语义分割等任务中取得SOTA性能。SwinTransformer的层次化设计使其成为计算机视觉领域的重要基础架构,MindSpore等框架已提供其实现方案。
2025-07-11 17:20:06
875
原创 [MindSpre] GroupNorm 和 Prenorm的使用
摘要: GroupNorm(GN)是一种替代BatchNorm的归一化方法,将通道分组后标准化,适用于小batch任务(如扩散模型),稳定性强。Prenorm是Transformer的改进策略,在子层(如注意力)前进行LayerNorm,缩短梯度路径,提升深层网络训练稳定性。两者常结合用于视觉模型(如U-Net、ViT),GN稳定卷积输出,Prenorm优化注意力机制。对比而言,BatchNorm依赖batch大小,GN更通用;Prenorm比传统Postnorm更易收敛,适合复杂架构。
2025-07-11 17:15:40
702
原创 [MindSpre] Positional Embedding的使用
位置编码(Positional Embedding)是序列建模中表示元素顺序信息的关键技术。主要包括两种类型:正弦位置编码(固定公式生成,具有周期性和相对位置信息)和可学习位置编码(作为可训练参数)。正弦编码通过广播机制将位置与预设频率因子相乘,再应用sin/cos函数构造,常用于Transformer和扩散模型;而可学习编码通过嵌入表实现,多用于视觉任务。在扩散模型中,时间步通过位置编码转换为条件向量输入网络。两种方式各有特点:正弦编码无需训练、泛化能力强,可学习编码更灵活但参数多。
2025-07-11 17:12:24
685
原创 [Mindspore]自定义 Smooth Label 损失
本文介绍了CrossEntropySmooth损失函数,这是一个带有标签平滑功能的交叉熵损失,适用于图像分类任务。该函数继承自MindSpore的LossBase,支持标签平滑(防止过拟合)、稀疏/one-hot标签输入以及mean/sum聚合方式。初始化参数包括标签平滑系数、类别总数等,通过one-hot编码和SoftmaxCrossEntropyWithLogits实现损失计算。标签平滑通过调整真实类别和非真实类别的概率值来提高模型泛化能力。示例展示了函数用法,并分析了不同平滑系数的影响。该函数易于集成
2025-07-11 17:03:42
647
原创 MindSpore的算子 ops.OneHot()使用说明
摘要:MindSpore的ops.OneHot()算子用于将整数标签转换为one-hot编码,适用于分类任务。该算子接收输入标签、类别总数(depth)、正类值(on_value)和其他值(off_value)参数,输出对应维度的one-hot张量。在标签平滑技术中,通过调整on_value和off_value的值实现更柔和的概率分布。使用需注意参数需为Tensor类型,depth需匹配类别数,输入标签应为整数类型。该算子能自动高效地完成编码转换,避免手动构造one-hot标签。
2025-07-11 17:00:13
284
原创 昇思MindSpore开源实习暑期特辑活动上线!
昇思MindSpore推出暑期开源实习项目,提供香橙派智能硬件开发、科学计算等前沿技术实践机会。参与者可获得丰厚实习薪资(最高8000元)、导师指导、技术交流机会,优秀者还能受邀参加技术峰会。项目涵盖AI边缘计算、视觉分析等多个应用领域,现正开放报名,详情见活动海报。
2025-07-04 15:40:54
202
原创 昇思MindSpore框架成功适配面壁MiniCPM4.0模型
面壁智能发布开源端侧模型MiniCPM4.0,提供8B和0.5B双版本,实现最高220倍加速。该模型采用"高效双频换挡"机制,在长文本场景下性能超越同类模型5-70倍,并减少75%缓存占用。MiniCPM4.0-8B在多项基准测试中优于Qwen-3-8B等模型,0.5B版本则达到600Token/s的极速推理。昇思MindSpore框架提供完整部署支持,开发者可通过魔乐社区获取权重和部署指南。该创新标志着国产大模型在端侧应用领域取得重要突破。
2025-07-04 14:57:00
804
原创 东方物探联合人大高瓴学院发布基于昇思打造的全波形反演模型
东方物探联合产学研团队基于昆仑大模型,突破全波形反演(FWI)技术瓶颈,研发AI驱动的创新解决方案。该技术融合三大核心突破:1)数据与机理双驱动的波动方程智能求解方法,提升声波方程求解效率10倍;2)基于MindSpore自动微分的反演框架,简化计算流程并降低50%算力;3)首创基于扩散模型的三维地质数据生成技术。实际验证显示二维/三维反演效率提升超10倍,已成功应用于海洋勘探项目,计划2025年推广试点。该方案将推动油气勘探实现"AI换芯",并为地质勘探、医学成像等领域的反问题求解提供
2025-07-04 14:50:50
293
原创 大模型内存占用调优
当模型运行时出现host内存持续增长,可能是内存泄漏问题。常见泄漏位置包括数据集读取和网络部分,可通过分段测试定位。推荐使用memory_profiler工具进行逐行内存分析。若出现"out of memory"报错,表明内存溢出。优化方案包括:调整数据集预取参数(prefetch_size)、减少工作线程数(num_parallel_workers)、精简map/shuffle操作、降低buffer_size和batch_size。这些措施可有效降低内存占用,但需权衡性能影响。
2025-07-04 14:47:47
135
原创 基于昇思MindSpore实现Palette扩散模型
昇思MindSpore 2024技术帖分享大会圆满举办,全年收录80+优质技术帖。2025年将升级为"昇思干货小卖部",持续征集技术文章。本期分享开发者Adrem投稿的Palette模型解析:该通用图像转换模型基于扩散框架,统一处理着色、修复等任务,无需单独调参。核心采用256×256条件UNet,通过跳跃连接实现多尺度特征融合,使用L2损失保证样本多样性。文章详细解析了模型预训练、任务适配、噪声调度等关键技术,并附MindSpore实现代码。Palette的创新在于统一框架处理多任务,
2025-07-04 14:46:29
450
原创 数据集处理结果精细对比
文章摘要:介绍了两种验证数据集处理正确性的方法:1) 可视化检查,将增强后的数据转换为图片直观判断合理性;2) 使用TroubleShooter工具进行精细对比,通过保存处理结果为npy文件并计算相似度指标(匹配率、余弦相似度)来检测差异。对比内容涵盖数据集一致性、归一化参数、混洗逻辑及增强方式等关键项。该方法适用于发现数据增强或处理流程中的潜在问题,确保训练数据的准确性。
2025-07-04 14:43:13
246
原创 MindSpore权重转换全解析:基于Safetensors格式的高效实现
文章摘要:MindSpore框架提供了完善的权重转换方案,基于Safetensors格式实现高效安全的分布式权重管理。核心接口unified_safetensors支持将分布式权重合并为完整模型,load_distributed_checkpoint则处理权重的分布式加载。文章详细解析了两大接口的参数配置、使用场景及性能优化方法,包括训练恢复、推理部署等典型应用,并针对常见问题提供了解决方案。这套工具链实现了训练与推理场景的无缝衔接,支持跨框架兼容和零拷贝加载,有效提升了深度学习模型全生命周期的管理效率。
2025-07-04 14:40:08
865
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人