Python中pandas包的简单使用

OpenSNN开思通智网,官网地址:https://w3.opensnn.com/
2024年8月份 “O站创作者招募计划”
快来O站写文章,千元大奖等你来拿!
“一起来O站,玩转AGI!”

pandas 主要用于数据分析,常用于处理结构化数据,如表格数据。下面是 pandas 的简单使用。

1. 导入 pandas

首先,你需要导入 pandas 包:

import pandas as pd

2. 创建 DataFrame

DataFramepandas 的核心数据结构,类似于电子表格中的表格。你可以从字典、列表等数据结构创建一个 DataFrame

data = {
    'Name': ['Alice', 'Bob', 'Charlie'],
    'Age': [25, 30, 35],
    'City': ['New York', 'Los Angeles', 'Chicago']
}

df = pd.DataFrame(data)
print(df)

输出:

      Name  Age         City
0    Alice   25     New York
1      Bob   30  Los Angeles
2  Charlie   35     Chicago

3. 读取数据

你可以使用 pandas 读取各种格式的文件,比如 CSV 文件:

df = pd.read_csv('file.csv')

4. 数据选择与过滤

pandas 提供了多种方法来选择和过滤数据:

  • 选择列:
print(df['Name'])
  • 选择行:
print(df.iloc[0])  # 选择第一行
  • 基于条件过滤数据:
print(df[df['Age'] > 30])  # 选择年龄大于30的数据

5. 数据统计与分析

pandas 具有强大的数据统计功能:

print(df.describe())  # 生成数据的统计信息

6. 数据清洗

你可以轻松处理缺失数据:

df.dropna()  # 删除包含缺失值的行
df.fillna(0)  # 用0填充缺失值

7. 数据分组

你可以根据某列的值对数据进行分组:

grouped = df.groupby('City').mean()
print(grouped)

8. 导出数据

你可以将 DataFrame 导出为 CSV 等格式:

df.to_csv('output.csv', index=False)

这是 pandas 基本用法的一些示例。pandas 是 Python 中一个非常强大的数据分析库,可以用来进行数据处理、分析和可视化。


【转载自:】OpenSNN开思通智网 ---- “一起来O站,玩转AGI!”
【官网:】https://w3.opensnn.com/
【原文链接:】https://w3.opensnn.com/os/article/10001299

结束
### Python Pandas使用教程 #### 导入库 在使用 `pandas` 库之前,需先导入该库。通常情况下,会将其简写为 `pd` 以便于后续调用[^3]。 ```python import pandas as pd print(pd.__version__) ``` 此代码片段可以用来验证当前环境中安装的 `pandas` 版本号。 --- #### 安装Pandas库 如果尚未安装 `pandas` 库,则可以通过以下方式完成安装。确保已确认使用Python 版本满足最低要求(Python 2.7 或 Python 3 及以上版本)[^1]。 通过命令行输入以下内容来检查 Python 的版本: ```bash python --version ``` 接着,在终端或命令提示符下运行以下命令以安装 `pandas`: ```bash pip install pandas ``` 对于某些环境可能需要管理员权限,或者可以选择升级现有: ```bash pip install --upgrade pandas ``` --- #### 基础功能介绍 ##### 将分类变量转换为哑变量 `pandas` 提供了一个非常实用的功能——将分类变量转化为哑变量 (Dummy Variables),这有助于机器学习模型更好地处理类别型数据[^2]。 以下是具体实现方法: ```python import pandas as pd # 创建示例 DataFrame data = {'color': ['red', 'blue', 'green']} df = pd.DataFrame(data) # 转换为哑变量 dummies = pd.get_dummies(df['color'], prefix='color') result_df = pd.concat([df, dummies], axis=1).drop('color', axis=1) print(result_df) ``` 输出结果将是每种颜色对应一列布尔值表示是否存在该颜色。 --- #### 数据读取操作 `pandas` 支持多种文件格式的数据读取,常见的有 CSV 文件、Excel 表格以及数据库查询结果等[^3]。 ###### 读取CSV文件 假设有一个名为 `example.csv` 的文件,可通过以下代码加载到内存中: ```python df = pd.read_csv('example.csv') print(df.head()) # 查看前五行数据 ``` ###### 读取Excel表格 同样支持 Excel 格式的文件读取: ```python excel_data = pd.read_excel('file.xlsx', sheet_name='Sheet1') print(excel_data.describe()) ``` ###### 查询MySQL数据库 连接 MySQL 并提取表中的记录作为 DataFrame 对象展示出来: ```python import pymysql from sqlalchemy import create_engine engine = create_engine('mysql+pymysql://username:password@host/dbname') query = "SELECT * FROM table_name" db_data = pd.read_sql(query, engine) print(db_data.info()) ``` --- #### 总结 `pandas` 是一个强大的工具集,广泛应用于数据分析领域。它不仅提供了灵活的数据结构还封装了许多高效的操作接口。无论是简单的数值统计还是复杂的特征工程都能轻松应对。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值