1. 运行环境配置
本次使用的电脑系统是windows7。
使用YOLOv5训练自己的数据集,首先需要搭建YOLOv5的环境,包括安装Python环境、安装相关Python库、下载YOLOv5 github项目,具体操作方法请参照本人另一篇博文: [YOLOv5环境搭建]。
2. 下载模型文件
参考: [YOLOv5环境搭建],里面有下载模型文件的方法。
这里也提供CSDN下载链接:yolov5m.pt、yolov5l.pt、yolov5x.pt、yolov5s.pt、yolov3-spp.pt。这里5个文件代表5种不同的模型结构,例如yolov5m.pt中m表示中等大小的模型。
本次以yolov5s.pt为例进行案例分析,因此读者可以先只下载yolov5s.pt。因为yolov5s.pt是这几个中最小的一个模型,方便我们把流程跑通,之后读者想尝试更大的模型时,只需将yolov5s.pt替换成更大的模型文件即可。
为了方便后面的训练,可以将下载的模型文件拷贝到yolov5\weights文件夹中,如下图所示:
3. 数据集准备
本次以VOC2007为例进行案例分析,如果读者有自己的数据集,也可以按如下的方式准备后进行训练。
VOC数据集下载地址: [ Pascal VOC Dataset Mirror ],该网址是一个镜像网站,所有速度还是可以的。这里推荐使用迅雷下载,速度可以达到几M、甚至几十M。