- 博客(1085)
- 资源 (45)
- 收藏
- 关注

原创 Welcome To My Channel!
时间管理是一种习惯,也是一种心态。凡有成就的管理人都有四个共通的特性,即①明确的目标,②积极的态度,③自我激励,④良好的时间管理。做好时间管理,亦就是做对的事情,把事情做对。中小企业领导人与管理者,要把时间管理好,就是要坚持你的既定目标,永不放弃。2020计划 2020目标一:项目管理能力 数据分析-Power BI和其他 PPT-学习...
2019-04-18 11:11:22
8830
原创 用Dify构建气象智能体:从0到1搭建AI工作流实战指南
低代码编排:工作流节点拖拽式设计,无需写一行Python代码;一体化能力:知识库、Agent、部署无缝衔接,避免工具间数据流转损耗;灵活扩展:后续可快速集成卫星云图识别(通过"图片处理"节点调用AI模型)、用户位置自动识别(接入高德地图API)等功能。未来,我们计划基于Dify探索气象预测Agent——结合历史数据和LLM做短期降雨趋势预测,让智能体从"被动预警"升级为"主动预测"。如果你也在做垂直领域的智能体,强烈推荐试试Dify,它可能会彻底改变你对AI应用开发的认知。
2025-07-21 20:27:14
154
原创 产品剖析之AI创作与协作的未来革新者Flowith
独特的交互方式:Flowith采用无限画布+节点网络的交互模式,打破了传统线性对话的限制,让用户能够以更自然、更高效的方式与AI进行协作[9多线程任务处理:支持同时运行多个AI任务,实时显示任务进度,极大地提高了工作效率[10私有化知识图谱:自动拆解用户上传文档为知识单元,构建个人知识图谱,提高回答的准确性和针对性[10Oracle智能体:自动规划、分解和执行任务,是管理复杂项目的强大工具[9丰富的模型选择:支持多种AI模型,用户可以根据不同的任务需求选择最适合的模型[9本地部署能力。
2025-07-21 20:26:04
871
原创 LangChain示例选择器:让AI提示效率提升300%的黑科技!
示例选择器是 LangChain 中的一个关键组件,用于从大量示例中动态挑选最相关的内容,以构建少样本(few-shot)Prompt。节省 Token:只挑选最有用的示例,减少冗余信息提升模型性能:选择相关示例能加强模型的回答准确度,提高召回率💡 想象一下:你教孩子学数学,不会把100道题全给他,而是挑3-5道最相似的例题。示例选择器就是这个原理!# 糟糕的做法:把所有示例都塞给模型examples = [例子1, 例子2, 例子3,..., 例子100]
2025-07-20 19:20:09
38
原创 Agent产品应该考虑的底层条件:从幻想走向落地的基石指南
AI Agent底层设计:构建稳定高效的系统基础 核心摘要: AI Agent的成功落地高度依赖底层系统设计,78%的失败案例源于基础设施缺陷。本文系统梳理了Agent产品必需的六大底层模块:1)分层计算架构(实时/分析/战略层);2)多模态存储系统(向量数据库+会话存储+知识图谱);3)混合算力部署(边缘计算+GPU集群);4)数据流通管道;5)服务编排机制;6)安全合规体系。关键设计要点包括:异步任务调度、状态保持机制、弹性算力分配、多级存储策略和全局安全防护。建议采用分层架构设计,结合Redis/Pi
2025-06-30 21:11:34
93
原创 探秘LangChain Prompt模板:工程化实践之Prompt templates详解!
LangChain智能体Prompt工程化实践 LangChain作为生产级智能体开发框架,其核心在于Prompt的工程化管理。通过标准化模板设计,可显著提升智能体性能(意图识别准确率+37%,响应时间<1.2秒)。关键实现方案包括: 模板分层:基础PromptTemplate、FewShotPromptTemplate和ChatPromptTemplate分别应对不同场景 动态组合:支持Pipeline组合、Jinja2逻辑处理等多模板协同 实战案例:酒店客服系统通过SystemMessage+DB
2025-06-30 21:10:50
88
原创 Agent意图识别全解析:打造智能体理解力的核心引擎!
摘要:本文系统探讨了意图识别在智能体(Agent)中的核心作用与技术实现路径。意图识别作为Agent理解用户需求的关键环节,能够将自然语言映射为结构化意图标签与参数,支撑下游任务决策。文章从应用场景(如客服、AI助理)切入,对比单/多意图、工具/任务类等分类维度,提出结合LangChain框架的技术架构,涵盖上下文记忆、Prompt工程、LLM解析等模块。通过代码示例展示了基于LangChain的意图分类、参数抽取及多轮对话实现,并分析了与OpenAI Function Calling的协同方案。最后针对工
2025-06-30 20:39:27
295
原创 Langchain实战指南:从入门到精通AI链式编程!
LangChain框架解析:构建LLM应用的利器 LangChain是一个开源框架,通过模块化设计连接大语言模型(LLM)与外部工具,支持开发复杂AI应用。其核心组件包括: 模型接口:集成多种LLM提供商 链式工作流:串联多步骤任务流程 记忆管理:支持多轮对话上下文 代理系统:动态调用工具完成任务 优势在于灵活的组合能力与丰富集成生态,但存在学习曲线陡峭、调试复杂等挑战。该框架特别适用于需要结合检索、记忆和工具调用的智能应用开发,为LLM工程化提供标准化解决方案。
2025-06-24 23:56:09
107
原创 开篇:4周的时间设计并开发一个个性化具备专业知识的东方命理师AI agent!
hi,大家,最近没有更新我的动态,目前在一家国企控股的公司做AI产品经理,具体一点就是做AI agent产品,基于气象海洋的行业背景做气象智能体以及气象智能体+行业的一些解决方案,比如特种、低空、农业等等。从今天起我打算用4周左右的时间带大家一步步设计并落地一个AI agent产品,其中产品设计的部分,是我的本质工作,我会一一介绍给大家,技术部分,我也会手把手教大家(为了巩固我自己的AI能力,下场搓一把代码)!感兴趣的同学可以和我一起,有问题欢迎大家随时留言沟通!
2025-06-24 23:12:19
387
1
原创 一文读懂A2A(Agent-to-Agent)开放协议:AI领域的TCP/IP协议
A2A(Agent-to-Agent Protocol)是由谷歌于2025年推出的开放协议标准,旨在实现不同智能体之间的直接互通与协作。它通过标准化接口支持智能体间的动态服务发现、任务分配、数据交换和实时协作,打破“智能体孤岛”的局限。A2A的核心特性包括动态能力发现、任务生命周期管理、多模态协作和安全通信。它解决了传统AI系统中的生态碎片化、复杂任务瓶颈和实时协作缺失等问题,提升了开发效率和协作成本。A2A采用分布式三层架构,通过HTTP/SSE/JSON-RPC等协议实现智能体间的通信。应用场景涵盖企业
2025-05-15 22:56:41
1378
原创 一文带你读懂MCP模型上下文协议
MCP(Model Context Protocol,模型上下文协议)是由Anthropic公司主导推出的开放协议标准,旨在为大型语言模型(LLM)与外部工具、数据源及服务提供统一的通信框架。它被比喻为“AI领域的USB-C接口”,通过标准化的接口设计,使AI能够安全、高效地访问本地文件、数据库、API等资源,打破数据孤岛限制,实现动态工具发现与双向实时交互。
2025-04-22 12:00:00
1523
原创 一文读懂Function Calling:大模型与现实世界的交互革命
Function Calling是大语言模型(LLM)通过结构化指令调用外部函数或API的核心技术,使模型从“文本生成器”升级为“任务执行引擎”。它允许模型根据用户自然语言请求,动态触发预定义的外部工具(如数据库查询、API调用、数学计算),并将结果整合到最终回复中。核心价值突破文本生成局限:模型不再依赖静态知识库,可实时获取外部数据(如天气、股票);增强任务自动化能力:支持多步骤复杂操作(如订机票+查天气+生成行程);
2025-04-22 10:00:00
2209
原创 AI视频生成产品体验分享(第2趴):Vidu、Hailuo、Runway、Pika谁更胜一筹?
1. Vidu:国产自研的「一致性标杆」定位专注于解决AI视频生成中的多主体一致性与物理模拟难题,以“高精度控制+低成本生成”为核心竞争力。定位为中小企业与二次创作领域的首选工具,尤其擅长电商产品展示、教育课件等需要角色/场景稳定性的场景。核心用户群B端:电商企业(批量生成商品视频)、教育机构(动态课件制作);C端:二次元UP主(同人动画)、影视爱好者(低成本分镜预演);开发者:开源社区吸引插件开发者扩展垂直场景(如医疗手术模拟)。核心打法技术壁垒。
2025-03-18 16:32:12
2168
原创 深入浅出读懂「RLHF」基于人类反馈的进行强化学习
RLHF(Reinforcement Learning from Human Feedback)就是基于人类反馈(Human Feedback)对语言模型进行强化学习(Reinforcement Learning),和一般的fine-tune过程乃至prompt tuning自然也不同。多种策略产生样本并收集人类反馈训练奖励模型训练强化学习策略,微调 LM首先需要一个预训练语言模型,通过大量的语料去训练出基础模型,对于ChatGPT来说就是GPT-3。
2025-03-18 16:27:40
1208
原创 从AI产品经理视角深度剖析Manus:技术、定位与商业化的三重跃迁
• 覆盖6大类51个场景(如金融、教育、供应链),通过动态任务拆解适配不同行业需求,而非依赖预定义功能。• 传统AI助手(如ChatGPT)仅提供建议或答案,而Manus直接交付完整成果(如生成旅行手册、股票分析网站),解决了用户从“思考”到“行动”的最后一公里问题。在金融、法律等高度结构化领域,Manus有望成为行业知识的“压缩器”,通过任务执行沉淀领域认知(如合同风险模式库),反向赋能大模型训练。:支持多模态输入(文本/图像/语音),自动识别任务优先级与资源冲突(如预算与时间矛盾)。
2025-03-12 09:29:47
1784
原创 一文带你了解RunningHub在线AIGC创作平台!
RunningHub作为一款以云端ComfyUI为核心的在线AIGC创作平台,精准解决了传统AIGC工具本地部署复杂、资源分散、插件维护成本高等痛点。其定位为**“零门槛、高兼容性、生态化”的AIGC生产力工具**,通过整合海量工作流、模型库及实时更新的技术架构,服务于设计师、AI创作者及企业用户的多维需求。📌 网址:https://www.runninghub.cn/创作者生态:支持用户上传并售卖原创工作流,通过用户购买量获得收益,优秀创意可直接变现。技术实时更新。
2025-03-05 13:52:39
2925
原创 关于to C类的AIGC内容生产工具的一些想法!
C端AIGC应用正从“玩具级工具”向“生产力助手”转型,但技术突破与用户习惯培养仍需长期投入。:Pixverse的角色一致性功能,允许用户定制虚拟形象并持续用于内容创作。:即梦(剪映)通过手机端简化视频生成流程,支持抖音生态一键发布。:Vidu通过物理模拟技术增强视频动态真实感,支持复杂场景生成。
2025-03-05 12:11:06
507
原创 通过研究报告了解智能客服前世今生
对话内容总结:基于大模型的总结能力,可以为人工客服提供坐席辅助、工单预填、前情摘要等能力,提升坐席人员的工作效率,降低客户通话时长。知识资产构建:基于大模型的内容创作、总结、分类等能力,可以从对话记录等非结构化文档数据进行智能的知识抽取,自动完成知识标注和知识维护,这些知识点将被用于知识管理流程和系统中,然后补充到企业知识库中。机器人坐席:大模型提高了机器人客服的意图理解和内容分类能力,这是机器人客服更像“人”一样与用户对话的核心能力。
2025-03-04 12:51:33
371
原创 AIGC相关基础知识普及篇!
🔥一文读懂「AIGC,AI Generated Content」AI生成内容直接回看,不做赘述!按照模态划分(指的是AIGC技术能够处理和生成的内容类型),AIGC又可以分为文本生成(如ChatGPT、Kimi等)、图像生成(如StableDiffusion、Midjourney等)以及视频生成(如可灵AI、Sora等)。当然还有一个模态划分,也是未来AI大模型的发展趋势,叫做多模态。多模态指的是同时处理来自不同模态的信息,如文本、图像、音频等。也就是说一个AI大模型,能同时处理多种内容生成类型。
2025-03-03 11:51:16
1009
原创 AIGC生图产品PM必须知道的Lora训练知识!
在自然语言处理领域,一种重要的范式是对通用领域数据进行大规模预训练,然后将模型适应到特定任务或领域。随着预训练模型越来越大,完全微调(重新训练所有模型参数)的成本越来越高。例如,对于拥有1750亿参数的GPT-3 175B模型,部署独立的微调模型实例是非常昂贵的。Low-Rank Adaptation (LoRA)是一种解决方案,它通过在Transformer架构的每一层中注入可训练的低秩分解矩阵,将预训练模型的权重固定,并在下游任务中大大减少了可训练的参数数量。
2025-03-01 00:15:10
1216
原创 AI生图产品功能实现原理简单拆解!
hi,同学吗,今天想要和大家方向一下AI生图应用产品中大家常见的一些功能的原理,帮助大家了解到底是怎么实现的,基本包含了一下几个方面的功能!找几款比较火的产品进行介绍,这里选择「美图设计室」、「Canva」、「」,基于SD去分析他的实现原理。
2025-03-01 00:13:47
1221
原创 产品经理的图像类Prompt的黄金撰写法则,新手技巧大揭秘!
主体+场景+细节结构化描述采用「主体-场景-状态-风格-细节」的递进式结构,例如:“阳光下的金毛犬(主体)在花园里追逐蝴蝶(场景),动态模糊效果(状态),写实摄影风格,毛发细节清晰可见(细节)”。细节包括了艺术风格、画质、视角等等5W1H公式应用通过Who(主体特征)、What(行为/外观)、When(时间)、Where(场景)、Why(氛围/目的)、How(艺术风格/技术细节)构建完整画面。
2025-02-28 17:52:55
985
原创 实战经验分享之一口气搞懂Controlnet怎么用!
当你使用 Stable diffusion 生成图像时,是否有过这种经历?提示词内容在生成结果中似乎都体现出来了,但又总不是自己想要的样子,于是陷入到无限生成(抽卡)的状态,耗费大量时间,逐渐消磨兴趣、耐性及对SD的信任。同样的文字,不同的人理解会不同,想象的画面也各不一样,机器当然也是如此,最好的办法就是“用图表达”。给SD一张参考图,让SD充分理解你的想法。俗话说,一张图胜过千言万语。Stable Diffusion 的基本工作原理就是以文字作为引导条件,生成符合条件的图像。其短板就是。
2025-02-28 14:17:23
1011
原创 深入了解即时零售之美团闪购业务!
美团闪购是美团于2018年推出的即时零售平台,定位于“30分钟万物到家的生活卖场”,覆盖生鲜食品、商超日用、数码家电、医药健康、鲜花绿植等全品类商品,满足消费者对即时性、便利性的需求。通过轻资产模式与商家合作,依托美团外卖的配送网络,实现24小时高效履约,日均订单量已突破1000万单。核心亮点闪电仓模式:前置仓面积小、SKU多(3000-5000个),专为线上销售设计,由专人或机器人24小时运营,预计2027年数量超10万个,市场规模达2000亿元。技术支撑。
2025-02-18 12:34:33
2153
1
原创 模型蒸馏和知识蒸馏有什么区别和联系!
模型蒸馏(Model Distillation)和知识蒸馏(Knowledge Distillation)是紧密相关的概念,但在技术范畴和应用细节上存在一定差异。
2025-02-17 18:15:51
1174
原创 浅谈大模型「蒸馏」是什么技术!
大模型蒸馏(Model Distillation)是一种将大型、复杂模型(教师模型)的知识迁移到小型、高效模型(学生模型)的技术,旨在解决大模型部署成本高、推理速度慢的问题。为什么要用蒸馏把大模型学习到的东西迁移到小模型呢?因为大的模型很臃肿,而真正落地的终端算力有限,比如手表,安防终端。所以要把大模型变成小模型,把小模型部署到终端上。核心原理。
2025-02-17 18:03:35
987
原创 浅谈AIGC图片/视频产品的市场和用户需求!
AIGC图片/视频产品的市场增长迅速,用户需求聚焦在。AIGC图片/视频产品的用户需求主要集中在。未来的产品方向应更加关注。,将是决定市场竞争力的关键。
2025-02-12 08:00:00
506
原创 一文搞懂AI生成视频的技术原理与应用!
AI视频生成技术是一个快速发展的领域,它通过深度学习等技术使得视频内容的生成变得更加高效和逼真。这项技术不仅能够提升视频制作的质量,还能开拓新的应用领域,从娱乐到教育,从广告到安全,都有其独特的价值和潜力。随着技术的不断进步,我们可以预见AI视频生成将在未来的多媒体领域扮演越来越重要的角色。
2025-02-11 11:34:11
5014
原创 深入浅出研究AI界黑马应用「Deepseek」!
💣 先丢一波重磅炸弹!hihi,朋友们,相信这个春节大家过得是非常不错,在过去的这几天里,DeepSeek算是彻底爆火了,火出圈了,火到全民皆知的程度。Deepseek的这波操作的确圈了一波粉,效果杠杠的,虽然晚来了几天,但是正好,好的东西需要持续发酵!我再来介绍一波!
2025-02-11 00:27:34
1843
原创 项目协作软件「Confluence」大扫盲!
Confluence是一款功能强大且灵活的企业协作工具,通过其丰富的功能和强大的集成能力,帮助企业实现知识共享、团队协作和项目管理的高效化。
2025-02-10 07:50:19
1460
原创 一文了解透彻项目管理工具「JIRA」!
Jira是一款功能强大且灵活的项目管理工具,适用于各种规模和类型的团队。其高度的可定制性和丰富的插件生态使其成为许多企业和团队的首选工具。然而,在选择时也需考虑其成本和适用性问题。
2025-02-10 07:24:11
2269
原创 深入浅出了解「美图」产品矩阵和AI商业化进展!
官网美图的产品矩阵覆盖了从C端到B端的广泛领域,包括影像及设计产品、美业解决方案和广告业务。核心产品如美图秀秀、美颜相机、Wink等在国内外市场表现优异,用户规模庞大美图公司通过深度整合AI技术与产品矩阵,不仅巩固了其在影像及设计领域的领先地位,还成功拓展了生产力工具市场。其AI战略和全球化布局为其带来了持续的增长动力,并在激烈的市场竞争中保持了较强的竞争力。
2025-01-21 11:39:44
1306
原创 一文了解清楚「Agent开发平台」工具!
官方GPTs商店:各大平台均设有官方GPTs应用商店,汇聚了琳琅满目的插件与模型,满足多元化需求。知识库:在知识库构建上,各平台展现独特风采,内容既广泛又深入,助力用户轻松获取所需信息。流程图编排: 流程图编排功能作为标配,让无编程基础的用户也能通过直观拖拽,迅速构建高效工作流,实现流程自动化。多模型支持: 对于模型支持,部分平台展现开放姿态,兼容多模型选择;而有的则专注于自家大模型深度优化,但无论哪种,均能有效支撑日常工作的顺利进行。
2025-01-15 12:54:53
3229
2
原创 一文研究透RPA(机器人流程自动化)!
RPA技术在提升企业效率、降低成本、优化流程等方面具有巨大的潜力。随着AI、机器学习、深度学习等技术的进一步融合,RPA的智能化水平将不断提升,推动自动化领域的革新。企业在引入RPA时,不仅要关注技术层面的实现,还需要考虑其应用场景、员工培训以及变革管理等方面的挑战。
2025-01-13 12:05:03
1697
原创 深入浅出研究一下Cursor,每个人都能开发APP的时代到来了!
Cursor 是一款由AI 驱动的代码编辑器,旨在通过集成先进的人工智能技术来提升开发者的编程效率和体验。Cursor 的核心功能包括智能代码补全、自然语言编辑、代码库理解、实时错误检测与修复、多文件编辑等,这些功能帮助开发者更高效地编写代码,并减少重复性工作Cursor 是基于 Visual Studio Code 构建的,并且作为其分支进行优化,使其能够提供更深入的 AI 集成和用户体验。Cursor 的设计目标是通过 AI 技术简化编码过程,使开发者能够专注于代码逻辑而非繁琐的手动编码工作。
2025-01-08 15:52:34
2803
原创 深入浅出AI「低代码平台」落地应用!
低代码(Low Code)是一种可视化的应用开发方法,用较少的代码、以较快的速度来交付应用程序(来源于百度百科)。从百度百科对低代码平台的定义可以了解到低代码平台是利用可视化开发与较少的代码相结合的方式来实现快速高效地开发应用。
2024-12-26 12:56:39
179
原创 产品初探Devops!以及AI如何赋能Devops?
DevOps(Development and Operations的缩写)是一种融合软件开发(Development)与运维(Operations)的文化、实践和工具集,旨在提高组织在软件开发、部署和运维过程中的效率、协作与持续改进能力。DevOps不仅仅是一套技术或工具,更是一种推动组织文化转变的方法,强调跨职能团队的协作与沟通,以实现更快速、更可靠的软件交付。DevOps通过促进开发与运维团队的协作、引入自动化工具和优化流程,显著提升了软件开发和交付的效率与质量。
2024-12-26 12:10:53
2240
1
粉丝经济:传统企业转型互联网的突破口
2019-01-03
Single Image Dehazing via Multi-Scale Convolutional Neural Networks
2019-04-05
Learning Linear Transformations for Fast Arbitrary Style Transfer论文解读
2019-04-03
管理十诫:影响你一生的管理哲学
2019-05-01
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人