设圆 ω\omegaω 之外有一直线 lll, ABABAB 为 ω\omegaω 直径且 AB⊥lAB\bot lAB⊥l (BBB 更靠近 lll). DDD 为 lll 上的一点, ADADAD 交 ω\omegaω 于 CCC, 过 DDD 的 ω\omegaω 的切线切之于 EEE (CCC 和 EEE 在 ABABAB 的异侧), BEBEBE 交 lll 于 FFF, AFAFAF 交 ω\omegaω 于 GGG, GGG 关于 ABABAB 的对称点为 G′G'G′. 求证: G′G'G′, CCC, FFF 共线.
证明:
设过 DDD 的 ω\omegaω 的切线切之于 EEE, HHH. 设 HHH 关于 ABABAB 的对称点为 H′H'H′ (显然它在 ω\omegaω 上).
下面证明: H′H'H′ CCC, FFF 共线. 由塞瓦定理, 只需证明:
sin∠EH′Csin∠AH′Csin∠AEBsin∠H′EBsin∠H′AHsin∠EAH=1\frac{\sin \angle EH'C}{\sin \angle AH'C} \frac{\sin \angle AEB }{\sin \angle H'EB} \frac{\sin \angle H'AH}{\sin \angle EAH}=1sin∠AH′Csin∠EH′Csin∠H′EBsin∠AEBsin∠EAHsin∠H′AH=1
⟺ ECAC1sin∠BAHsin(2∠BAH)sin∠EAH=1\iff \frac{EC}{AC} \frac{1}{\sin \angle BAH} \frac{\sin(2 \angle BAH)}{\sin \angle EAH}=1⟺ACECsin∠BAH1sin∠EAHsin(2∠BAH)=1
⟺ ECAC2cos∠BAHsin∠EAH=1\iff \frac{EC}{AC} \frac{2\cos \angle BAH}{\sin \angle EAH}=1⟺ACECsin∠EAH2cos∠BAH=1
⟺ 2ECACsin∠ABHsin∠EAH=1\iff 2 \frac{EC}{AC} \frac{\sin \angle ABH}{\sin \angle EAH}=1⟺2ACECsin∠EAHsin∠ABH=1
⟺ 2ECACAHEH=1\iff 2\frac{EC}{AC} \frac{AH}{EH}=1⟺2ACECEHAH=1
⟺ 2EC⋅AHAC⋅EH=1\iff 2 \frac{EC \cdot AH}{AC \cdot EH}=1⟺2AC⋅EHEC⋅AH=1
四边形 ECAHECAHECAH 为调和四边形, 上式显然成立.
显然直线 lll 是点 KKK 的极线.
由圆内接四边形的性质可知, BEBEBE, AHAHAH 交于 lll 上一点, 显然该点为 FFF, 进而可知 HHH 即为 GGG.
证毕.