2004年IMO几何预选题第2题

设圆 ω\omegaω 之外有一直线 lll, ABABABω\omegaω 直径且 AB⊥lAB\bot lABl (BBB 更靠近 lll). DDDlll 上的一点, ADADADω\omegaωCCC, 过 DDDω\omegaω 的切线切之于 EEE (CCCEEEABABAB 的异侧), BEBEBElllFFF, AFAFAFω\omegaωGGG, GGG 关于 ABABAB 的对称点为 G′G'G. 求证: G′G'G, CCC, FFF 共线.

在这里插入图片描述

证明:

在这里插入图片描述

设过 DDDω\omegaω 的切线切之于 EEE, HHH. 设 HHH 关于 ABABAB 的对称点为 H′H'H (显然它在 ω\omegaω 上).

下面证明: H′H'H CCC, FFF 共线. 由塞瓦定理, 只需证明:

sin⁡∠EH′Csin⁡∠AH′Csin⁡∠AEBsin⁡∠H′EBsin⁡∠H′AHsin⁡∠EAH=1\frac{\sin \angle EH'C}{\sin \angle AH'C} \frac{\sin \angle AEB }{\sin \angle H'EB} \frac{\sin \angle H'AH}{\sin \angle EAH}=1sinAHCsinEHCsinHEBsinAEBsinEAHsinHAH=1

  ⟺  ECAC1sin⁡∠BAHsin⁡(2∠BAH)sin⁡∠EAH=1\iff \frac{EC}{AC} \frac{1}{\sin \angle BAH} \frac{\sin(2 \angle BAH)}{\sin \angle EAH}=1ACECsinBAH1sinEAHsin(2BAH)=1

  ⟺  ECAC2cos⁡∠BAHsin⁡∠EAH=1\iff \frac{EC}{AC} \frac{2\cos \angle BAH}{\sin \angle EAH}=1ACECsinEAH2cosBAH=1

  ⟺  2ECACsin⁡∠ABHsin⁡∠EAH=1\iff 2 \frac{EC}{AC} \frac{\sin \angle ABH}{\sin \angle EAH}=12ACECsinEAHsinABH=1

  ⟺  2ECACAHEH=1\iff 2\frac{EC}{AC} \frac{AH}{EH}=12ACECEHAH=1

  ⟺  2EC⋅AHAC⋅EH=1\iff 2 \frac{EC \cdot AH}{AC \cdot EH}=12ACEHECAH=1

四边形 ECAHECAHECAH 为调和四边形, 上式显然成立.

显然直线 lll 是点 KKK 的极线.

由圆内接四边形的性质可知, BEBEBE, AHAHAH 交于 lll 上一点, 显然该点为 FFF, 进而可知 HHH 即为 GGG.

证毕.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值