(3) 证明: 显然, 等差数列 {a1,...,a4n+2}\{a_{1},...,a_{4n+2}\}{a1,...,a4n+2} 是 (i,j)(i, j)(i,j)-可分的等价于等差数列 {1,...,4n+2}\{1,...,4n+2\}{1,...,4n+2} 是 (i,j)(i,j)(i,j)-可分的. 前推后显然, 我们考虑后推前, 在去掉第 iii 和 jjj 项后, 若一个分割方案把 {1,...,4n+2}\{1,...,4n+2\}{1,...,4n+2} 分割成 nnn 个长为4的等差数列, 那么该分割方案也必然把 {a1,...,a4n+2}\{a_{1},...,a_{4n+2}\}{a1,...,a4n+2} 分割成 nnn 个长为4的等差数列, 因此二者等价.
考虑使得 {1,...,4n+2}\{1,...,4n+2\}{1,...,4n+2} (i,j)(i,j)(i,j)-可分的 (i,j)(i,j)(i,j) 的可行取值数目:
当 n=1n=1n=1 时, 通过穷举, (i,j)(i,j)(i,j) 可取 (1,2)(1,2)(1,2), (1,6)(1,6)(1,6), (5,6)(5,6)(5,6). 当 n=kn=kn=k 时, 设 (i,j)(i,j)(i,j) 有 xkx_kxk 个可行取值, 考虑当 n=k+1n = k+1n=k+1 时: {1,...,4k+6}\{1,...,4k+6\}{1,...,4k+6} 的前 444 项和后 4k+24k+24k+2 项分别构成两个等差数列. 由此易知, 将 n=kn=kn=k 时的每个 (i,j)(i,j)(i,j) 可行取值整体加 444, 就构成了当前的一个可行取值. 容易验证, 每个 i,j>4i,j>4i,j>4 的可行取值都可以视为这么得到的. 接下来我们考虑 i<4i<4i<4 的可行取值. 依然是枚举, 令 iii 取 111, jjj 取 (1,4s+2)(1, 4s+2)(1,4s+2), 其中 0≤s≤n0\leq s \leq n0≤s≤n, 此时 iii, jjj 之间的数的个数为 444 的整数倍, j+1j+1j+1 到 4n+24n+24n+2 之间数的个数为 444 的整数倍, 显然这个 (i,j)(i,j)(i,j) 的取值是可行的, 即 (1,4s+2)(1, 4s+2)(1,4s+2), 0≤s≤n0\leq s \leq n0≤s≤n 是可行的. 设 2≤d≤n2\leq d\leq n2≤d≤n, 则 111 到 4d4d4d 刚好可以分成 ddd 个长度为4的等差数列 {1,...,1+3d}\{1,...,1+3d\}{1,...,1+3d}, {2,...,2+3d}\{2,...,2+3d\}{2,...,2+3d}, …, {d,...,4d}\{d,...,4d\}{d,...,4d}, 2+4d2+4d2+4d 与 4d4d4d 之间刚好隔了一个数 4d+14d+14d+1, 去除 222 和 4d+14d+14d+1, 111 到 4d+24d+24d+2 也可以分成 ddd 个长度为 444 的等差数列 {1,...,1+3d}\{1,...,1+3d\}{1,...,1+3d}, {2+d,...,2+4d}\{2+d,...,2+4d\}{2+d,...,2+4d}, …, {d,...,4d}\{d,...,4d\}{d,...,4d}. 令 iii 取 222, j=4d+1j=4d+1j=4d+1, 则去除 iii 和 jjj 后 111 到 4d+24d+24d+2 也刚好可以分成 444 个长度为 444 的等差数列, 剩下的数相邻四个为一组可以分成长度为 444 的若干等差数列, 所以此时的 (i,j)(i,j)(i,j) 取值是可行的, 即 (2,4d+1)(2, 4d+1)(2,4d+1), 2≤d≤n2\leq d \leq n2≤d≤n 是可行的. 因此 n=k+1n=k+1n=k+1 时的可行取值数目至少为 xk+1=xk+2k+2x_{k+1}=x_k+2k+2xk+1=xk+2k+2. 递推可得 xk+1≥3+2(1+...+k)+2k=k2+3k+3x_{k+1} \geq 3+2(1+...+k)+2k=k^2+3k+3xk+1≥3+2(1+...+k)+2k=k2+3k+3.
综上, 尽管没求出可行取值的具体数目, 但可知其下界为 n2+n+1n^2+n+1n2+n+1. 使得数列 {a1,...,a4m+2}\{a_1,...,a_{4m+2}\}{a1,...,a4m+2} (i,j)(i,j)(i,j)-可分的 (i,j)(i,j)(i,j) 可行取值数目至少为 m2+m+1m^2+m+1m2+m+1. 所以随机抽取两个 111 到 4m+24m+24m+2 的数 (i,j)(i, j)(i,j), 其使得 {a1,...,a4m+2}\{a_1,...,a_{4m+2}\}{a1,...,a4m+2} (i,j)(i,j)(i,j)-可分的概率至少为:
m2+m+1(2m+1)(4m+1)=m2+m+18m2+6m+1>18\frac{m^2+m+1}{(2m+1)(4m+1)}=\frac{m^2+m+1}{8m^2+6m+1}\gt \frac{1}{8}(2m+1)(4m+1)m2+m+1=8m2+6m+1m2+m+1>81
PS: 不是数学专业的… 只是喜欢数学的工科生而已. 没做出来, 想到了用数学归纳法做, 但是令i=2i=2i=2的时候, 试出来j=5j=5j=5是不可行的, 13+12n13+12n13+12n 是可行的, 所以认为是隔 121212 一个, 没想到5只是一个特例而已, 实际上9之后就可以, 被误导了方向, 他如果第二问是让证 (2,9)(2,9)(2,9) 或许就做出来了.