在推荐领域,双塔模型是粗排/召回环节应用最为广泛的算法模型,各种改进型双塔模型层出不穷,本文介绍一种基于 SENet 的双塔模型。
1.双塔模型的鼻祖——DSSM 模型
所谓“双塔模型”,可以追溯到 UIUC(伊利诺伊大学厄巴纳-香槟分校)与微软于 2013 在 CIKM 上发表的论文,论文中提到了一种名为 DSSM(Deep Structured Semantic Models,深度结构化语义模型)的模型。其核心思想是将 query 和 doc 映射到到共同维度的语义空间中,通过最大化 query 和 doc 语义向量之间的余弦相似度,从而训练得到隐含语义模型,达到检索的目的。
提出 DSSM 的论文题目:《Learning Deep Structured Semantic Models for Web Search using Clickthrough Data》
经过多年演进,DSSM 被广泛应用到多个领域,比如:搜索引擎检索,广告相关性,问答系统,机器翻译等。当然,DSSM 主要用在召回和粗排阶段,基本上统治了召回/粗排阶段,呈现“垄断地位”。推荐中 DSSM 双塔模型结构如图 1 所示:
如图 1 所示,双塔模型结构非