集合覆盖问题-基于贪心思想的近似算法-python实现

写这篇主要是想与线性规划求解集合覆盖问题做个性能对比,基于后者的实现方法可参考博文

本文中数据集X及集族生成规则同上一篇,这里不再介绍。整个贪心算法解决集合覆盖问题的实现代码如下。

# 集合覆盖问题-part1-贪心算法
import time
import random
from itertools import chain
import matplotlib.pyplot as plt

# 生成有限集X
X = set()
iter_ = [100,200, 500]
time_cost = []
for n in iter_:
    start_t = time.clock()
    X = random.sample(range(1, 10000), n)
    print('集合X中元素个数:', len(X))
    print('集合X:', X)

    # 生成子集
    S0 = random.sample(X, 20)
    n1 
### 使用Python实现贪心算法解决集合覆盖问题 #### 贪婪算法简介 贪婪算法是一种用于解决问题的方法,在每一步都做出局部最优的选择,期望最终能够得到全局最优解。对于某些特定类型的问题,这种方法可以有效地找到近似最优解。 #### 集合覆盖问题描述 集合覆盖问题是组合优化中的一个问题类别,给定一组子集及其成本,目标是从这些子集中选出尽可能少的数量来完全覆盖整个元素集合。这个问题被证明是NP难的,因此通常采用启发式方法求解,其中最常用的就是基于贪婪策略的方法[^1]。 #### Python代码实例 下面是一个简单的例子展示如何利用Python编写一个基本版本的贪婪算法去处理集合覆盖问题: ```python def greedy_set_cover(universe, subsets): """Find a family of subsets that covers the universal set""" elements = set(e for s in subsets for e in s) # 所有元素组成的集合 # 检查所提供的子集是否能覆盖全集 if elements != universe: return None covered = set() cover = [] while covered != elements: subset = max(subsets, key=lambda s: len(s - covered)) cover.append(subset) covered |= subset return cover if __name__ == '__main__': state_names = {"mt", "wa", "or", "id", "nv", "ut", "ca", "az"} stations = {} stations["kone"] = {"id", "nv", "ut"} stations["ktwo"] = {"wa", "id", "mt"} stations["kthree"] = {"or", "nv", "ca"} stations["kfour"] = {"nv", "ut"} stations["kfive"] = {"ca", "az"} result = greedy_set_cover(state_names, list(stations.values())) print('Selected stations:', ', '.join([key for value in result for key, val in stations.items() if val==value])) ``` 此程序定义了一个名为`greedy_set_cover()` 的函数接收两个参数:一个是代表所有可能元素构成的大集合;另一个是由多个较小集合组成列表形式表示的不同选项。该函数通过迭代方式挑选出那些每次都能增加最多未被选中过的成员数量的小集合加入到解决方案里直到所有的必需项都被包含进来为止。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值