第4周学习:MobileNetV1, V2, V3

本文介绍了MobileNet系列轻量级卷积神经网络,包括MobileNetV1的Depthwise Convolution,V2的Inverted Residuals,以及V3的优化和NAS搜索。同时,提到了SE-Net如何通过Squeeze和Excitation模块增强特征通道间的关系。代码作业展示了模型在图像分类任务中的应用,讨论了模型随机性和性能提升策略。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、论文及视频学习

1.MobileNetV1

1.1针对问题

传统卷积神经网络,内存需求大、运算量大,导致无法在移动设备以及嵌入式设备上运行。

1.2特点

专注于移动端或者嵌入式设备中的轻量级CNN网络。相比于传统卷积神经网络,在准确率小幅降低的前提下,大大减少了模型参数与运算量。

1.3亮点
  1. Depthwise Convolution(大大减少了运算量和参数数量)
  2. 增加超参数α(width multiplier卷积核个数的倍率,控制卷积过程中使用卷积核的个数)、β(Resolution Multiplier)(人为设定)
1.4和传统网络对比
1.4.1传统网络
  1. 卷积核channel=输入特征矩阵channel
  2. 输出特征矩阵channel=卷积核个数
1.4.2MobileNet
  1. 卷积核channel=1
  2. 输入特征矩阵channel=卷积核个数=输出特征矩阵channel
1.5Depthwise Separable Conv

由两部分组成:DW卷积、PW卷积。
理论上普通卷积计算量是DW+PW的8到9倍。

2.MobileNetV2

2.1特点

相比于V1,准确率更高,模型更小。

2.2亮点
  1. Inverted Residuals(倒残差结构)
  2. Linear Bottlenecks

3.MobileNetV3

3.1亮点
  1. 更新了Block(加入了SE模块,更新了激活函数)
  2. 使用NAS搜索参数
  3. 重新设计耗时层结构(减少了第一个卷积层的卷积核个数,精简了Last Stage)

4.《ImageNet 2017冠军模型SE-Net详解》

4.1亮点

基于考虑特征通道之间的关系,提出了SEnet。关键操作是 Squeeze和Excitation。希望显示地建模特征通道之间地相互依赖关系。不打算引入一个新的空间维度进行特征通道间地融合,而是采用学习的方式来自动获取到每个特征通道的重要程度,然后依照这个重要程度去提升有用的特征并抑制对当前任务用处不大的特征。

4.2Squeeze

顺着空间维度来进行特征压缩,将每个二维的特征通道变成一个实数,这个实数某种程度上具有全局的感受野,并且输出的维度和输入的特征通道数相匹配。它表征着在特征通道上响应的全局分布,而且使得靠近输入的层也可以获得全局的感受野。

4.3Excitation

类似于循环神经网络中门的机制。通过参数来为每个特征通道生成权重,其中参数被学习用来显式地建模特征通道间的相关性。

4.4Reweight

将Excitation的输出的权重看做是进过特征选择后的每个特征通道的重要性,然后通过乘法逐通道加权到先前的特征上,完成在通道维度上的对原始特征的重标定。

5.《HybridSN: Exploring 3-D–2-DCNN Feature Hierarchy for Hyperspectral Image Classification》

5.1 3D卷积和2D卷积的区别
  1. 3D卷积模型复杂,2D卷积模型简单
  2. 2D卷积缺失通道关系,3D较丰富

二、代码作业

1.准确率结果

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

2.classification map

在这里插入图片描述
在这里插入图片描述

三、思考

1.为什么每次分类结果不同?

模型中使用了一定比例的Dropout,而这部分是随机进行的,所以每次的结果有一定的细微差别。

2.如果要进一步提高光谱图像的分类性能,要如何改进?

或许可以尝试改进模型机制,使用论文中提到的其他有效方法进行融合尝试。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值