[极简]nanodet训练自己的数据集

一、准备数据集

cd nanodet
mkdir demo
cd demo
mkdir train
cd train
mkdir img
mkdir ann
cd ..
mkdir val
cd val
mkdir img
mkdir ann
cd ..

把原图片和xml标注文件放到train和val下面

二、修改配置文件

cp ./config/nanodet_custom_xml_dataset.yml ./demo

1、修改save_dir
2、修改num_classes
3、修改class_names
4、修改4个path

三、开始训练

python tools/train
<think>好的,用户之前问过目标检测算法,现在提到他们试过YOLO,但CPU上的检测速度是200ms,觉得太慢,想要更快的检测方法。首先,我需要理解他们的使用场景和需求。他们可能在资源受限的环境下工作,比如使用边缘设备或者没有GPU的机器,所以只能依赖CPU。这时候,速度是关键,可能需要轻量级模型或者优化策略。 用户可能已经尝试了YOLO的某个版本,比如YOLOv5或v8,但即使在CPU上,速度还不够。我需要考虑不同的YOLO变种是否更适合CPU,比如YOLOv5n或者YOLOv8n,这些是专门设计的纳米版本,参数量更少,可能更快。另外,用户可能没有进行模型转换,比如转成ONNX或者使用OpenVINO优化,这些都能提升CPU上的推理速度。 另外,是否有其他轻量级模型比YOLO更适合CPU?比如NanoDet、MobileNet-SSD、Tiny-YOLO,或者EfficientDet-Lite。这些模型设计时考虑了计算效率,可能在CPU上表现更好。还有基于Transformer的RT-DETR,虽然通常需要更多资源,但RT-DETR可能针对实时性做了优化,特别是在使用ONNX或OpenVINO的情况下。 用户还可能没有进行后处理优化,比如减少检测的类别数量,调整置信度阈值,或者缩小输入图像的尺寸,这些都能减少计算量。此外,多线程或批处理可能也是提升速度的方法,但在实时检测中可能不适用。 需要确认用户是否已经尝试了这些优化步骤,如果没有,提供这些建议可能会帮助他们提升速度。同时,要考虑到用户的技术水平,可能需要给出具体的实现步骤或代码示例,比如如何将YOLO模型转换为ONNX,或者如何使用OpenVINO优化。此外,推荐一些库或工具,比如ONNXRuntime、OpenVINO,以及如何安装和使用它们。 还要注意用户可能对准确率有一定要求,但当前主要问题是速度,所以需要在速度和准确率之间找到平衡。比如,YOLO的纳米版本虽然快,但准确率可能有所下降,需要用户根据实际场景权衡。 总结下来,回答应该包括优化现有YOLO模型的建议,推荐其他轻量级模型,以及后处理和工程优化方法,同时提供具体的实现步骤和工具,帮助用户在CPU上达到更快的检测速度。在</think>CPU上运行目标检测模型时,速度受限主要受算力和模型复杂度影响。以下是针对**CPU环境优化检测速度**的几种方案,涵盖模型选择、优化技巧和轻量化替代方案: --- ### **一、优化现有YOLO模型** #### 1. **切换更轻量的YOLO变体** - **YOLOv5n / YOLOv8n**:官方提供的“纳米级”(Nano)版本,参数量小(如YOLOv8n仅2.5M参数),适合CPU部署。 - **Tiny-YOLO系列**:如YOLOv4-tiny、YOLOv3-tiny,牺牲少量精度换取更快的速度(CPU上可达50-100ms/帧)。 #### 2. **模型压缩与格式转换** - **转换为ONNX**:使用PyTorch导出ONNX格式模型(减少框架依赖),并通过ONNX Runtime加速推理。 - **量化(Quantization)**:将模型权重从FP32转为INT8(精度损失可控),速度可提升2-4倍。 ```python # 示例:PyTorch模型动态量化 model = torch.quantization.quantize_dynamic(model, {torch.nn.Linear}, dtype=torch.qint8) ``` - **OpenVINO优化**:将模型转换为Intel OpenVINO格式,利用CPU指令集(如AVX-512)加速。 ```bash mo --input_model yolov8n.onnx --output_dir ov_model ``` #### 3. **调整推理参数** - **缩小输入分辨率**:如从640x640降为320x320,计算量减少约75%。 - **减少检测类别**:限定检测目标种类(如仅检测“人”或“车”),降低后处理复杂度。 - **置信度阈值调优**:适当提高`conf`阈值(如从0.25→0.5),减少冗余计算。 --- ### **二、替代YOLO的轻量级模型** 以下模型在CPU上可能比YOLO更快(部分需量化/优化后): | 模型 | 特点 | CPU速度参考(ms/帧) | |---------------------|-----------------------------------------|---------------------| | **NanoDet** | 无锚框设计,仅1.8M参数,支持INT8量化 | 30-50ms | | **MobileNet-SSD** | 经典轻量模型,适合低算力设备 | 40-70ms | | **EfficientDet-Lite**| Google官方优化版,平衡速度与精度 | 50-80ms | | **TFLite模型** | 使用TensorFlow Lite转换并量化,适配移动端 | 20-60ms | | **FastestDet** | 专为CPU设计的模型(<1M参数) | 10-30ms | --- ### **三、工程优化技巧** 1. **多线程/异步处理**: - 使用Python的`ThreadPoolExecutor`或C++多线程拆分预处理、推理、后处理步骤。 2. **模型预热**: - 首次推理前加载模型并运行空数据,避免首次调用延迟。 3. **批处理(Batch Inference)**: - 合并多帧输入一次性推理(适合视频流处理),减少单帧平均耗时。 --- ### **四、推荐工具链** 1. **推理框架**: - **ONNX Runtime**:支持多平台,启用`execution_provider=CPU`优化。 - **OpenVINO**:Intel CPU专用,支持INT8量化与指令集加速。 - **TensorFlow Lite**:适合移动端部署,支持GPU/NNAPI加速。 2. **代码库参考**: - NanoDet官方实现:https://github.com/RangiLyu/nanodet - OpenVINO+YOLO示例:https://github.com/openvinotoolkit/open_model_zoo --- ### **五、实测对比建议** 1. **测试步骤**: - 下载预训练轻量模型(如YOLOv8n、NanoDet)。 - 转换为ONNX/OpenVINO格式并量化。 - 使用优化后的框架(如ONNX Runtime)运行测试。 2. **示例代码(ONNX Runtime)**: ```python import onnxruntime as ort sess = ort.InferenceSession("yolov8n_quantized.onnx", providers=['CPUExecutionProvider']) outputs = sess.run(None, {"input": preprocessed_image}) ``` --- ### **六、总结** - **最快方案**:`FastestDet`或量化后的`NanoDet`(10-50ms/帧)。 - **平衡方案**:量化后的`YOLOv8n` + OpenVINO优化(约50-80ms/帧)。 - **注意事项**:速度提升可能伴随精度下降,需根据场景权衡。若允许,尝试结合GPU(如Intel核显OpenCL)进一步加速。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值