使用MATLAB进行K-means聚类和层次聚类

本文介绍了如何使用MATLAB进行K-means和层次聚类,以将8个二维点划分为3个类簇。通过比较两种方法的结果,并在坐标系中展示不同颜色的数据点来区分聚类效果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.分别使用k-means聚类和层次聚类,将以下八个点分为3个类簇。A1=(2,10),A2=(2,5),A3=(8,4),A4=(5,8),A5=(7,5), A6=(6,4), A7=(1,2),A8=(4,9)。

2.在二维平面直角坐标系中,分别绘制两种方法得到的聚类结果图(两张图)。3个不同的类别用数据点颜色进行区分。

K-means聚类 

% 函数文件

function [ resX,resY,seedX,seedY,record] = FunK_mean( x,y,k )
% 功能:
%     实现k-mean聚类算法
% 输入:
%     二维数据,分别用x,y两个一维向量代表两个维度
%     k 是分成的类别的数量
% 输出:
%     k行的两个矩阵
%     对应同样的第n行,存放着第n类的所有元素
%     record: 记录着每一行的有效元素的个数

    j = 1;
    % 下面是预分配一些空间
    % seedX 和 seedY 中存放着所有种子
    seedX = zeros(1,k);
    seedY = zeros(1,k);
    oldSeedX = zeros(1,k);
    oldSeedY = zeros(1,k);
    resX = zeros(k,length(x));
    resY = zeros(k,length(x));
    % 用来记录resX中每一行有效元素的个数
    
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

MATLAB码农

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值