题目链接
给你一个由 ‘1’(陆地)和 ‘0’(水)组成的的二维网格,请你计算网格中岛屿的数量。
岛屿总是被水包围,并且每座岛屿只能由水平方向和/或竖直方向上相邻的陆地连接形成。
此外,你可以假设该网格的四条边均被水包围。
示例1:
示例2:
提示:
m == grid.length
n == grid[i].length
1 <= m, n <= 300
grid[i][j] 的值为 ‘0’ 或 ‘1’
题解
法一 dfs
题解转载自nette
1.网格dfs的基本结构:
- 判断basecase:是否越界
- 上下左右访问相邻节点
void dfs(int[][] grid, int r, int c) {
// 判断 base case
// 如果坐标 (r, c) 超出了网格范围,直接返回
if (!inArea(grid, r, c)) {
return;
}
// 访问上、下、左、右四个相邻结点
dfs(grid, r - 1, c);
dfs(grid, r + 1, c);
dfs(grid, r, c - 1);
dfs(grid, r, c + 1);
}
// 判断坐标 (r, c) 是否在网格中
boolean inArea(int[][] grid, int r, int c) {
return 0 <= r && r < grid.length
&& 0 <= c && c < grid[0].length;
}
2.将访问过的格子标记
void dfs(int[][] grid, int r, int c) {
// 判断 base case
if (!inArea(grid, r, c)) {
return;
}
// 如果这个格子不是岛屿,直接返回
if (grid[r][c] != 1) {
return;
}
grid[r][c] = 2; // 将格子标记为「已遍历过」
// 访问上、下、左、右四个相邻结点
dfs(grid, r - 1, c);
dfs(grid, r + 1, c);
dfs(grid, r, c - 1);
dfs(grid, r, c + 1);
}
// 判断坐标 (r, c) 是否在网格中
boolean inArea(int[][] grid, int r, int c) {
return 0 <= r && r < grid.length
&& 0 <= c && c < grid[0].length;
}
方法:深度优先遍历
对于这道题来说,就是从一个是 “陆地” 的格子开始进行一次 “深度优先遍历” ,把与之相连的所有的格子都标记上,视为发现了一个 “岛屿”。
那么每一次进行 “深度优先遍历” 的条件就是:
1、这个格子是陆地 1,如果是水域 0 就无从谈论 “岛屿”;
2、这个格子不能是之前发现 “岛屿” 的过程中执行了 “深度优先遍历” 操作而被标记的格子
3、这个格子在岛屿中(base case)
具体到代码层面就是:
定义属于类的静态变量:
- private boolean[][] marked;//标记数组,标记了grid坐标对应的格子是否被访问过, 使用boolean而不是int数组可以避免初始化
定义方法:
- numIsIands()方法:遍历二维数组,如果grid[i][j]是岛屿中的一个点,且没有被访问过,就调用dfs()方法进行深度优先遍历
- dfs()方法:通过将gird[i][j]与directions数组相加从(i,j)开始向四周遍历,如果下一个点不越界、没有被访问过,并且是陆地,就从该点开始向四周遍历,对遍历过的点在marked数组中做标记
- inArea()方法:判断(i,j)是否在岛屿内
class Solution {
public int[][] dir ={{0,1},{1,0},{-1,0},{0,-1}};//四个方向
public boolean[][] visited;
//public int[][] dir = {{-1,0},{0,-1},{1,0},{0,1}};
public int numIslands(char[][] grid) {
visited=new boolean[grid.length][grid[0].length];
int count=0;
for(int i=0;i<grid.length;i++){
for(int j=0;j<grid[0].length;j++){
//没有被访问过且为陆地
if(!visited[i][j]&&grid[i][j]=='1'){
count++;
//从(i,j)开始深度搜索
dfs(grid,i,j);
}
}
}
return count;
}
// X:横轴坐标 Y:纵轴坐标
private void dfs(char[][] grid,int x, int y){
//把visited[x][y]=true放在这里,避免numIslands函数中要将搜索起点置为true,dfs中还要将岛屿中
visited[x][y]=true;
//遍历4个方向
for(int i=0;i<4;i++){
int nextX=x+dir[i][0];
int nextY=y+dir[i][1];
//1.边界条件
//注意这块不能是continue,否则会跳过后续的i
if(nextX<0||nextX>=grid.length||nextY<0||nextY>=grid[0].length) continue;
//没有被访问过且为陆地
if(!visited[nextX][nextY]&&grid[nextX][nextY]=='1'){
// //标记为访问
// visited[nextX][nextY]=true;
dfs(grid,nextX,nextY);
}
}
}
}
法二 bfs
import java.util.LinkedList;
import java.util.Queue;
public class Solution {
private final static int[][] DIRECTIONS = {{-1, 0}, {0, -1}, {1, 0}, {0, 1}};
private int rows;
private int cols;
private char[][] grid;
private boolean[][] visited;
public int numIslands(char[][] grid) {
rows = grid.length;
if (rows == 0) {
return 0;
}
cols = grid[0].length;
this.grid = grid;
visited = new boolean[rows][cols];
int count = 0;
for (int i = 0; i < rows; i++) {
for (int j = 0; j < cols; j++) {
if (!visited[i][j] && grid[i][j] == '1') {
bfs(i, j);
count++;
}
}
}
return count;
}
private void bfs(int i, int j) {
Queue<Integer> queue = new LinkedList<>();
queue.offer(i * cols + j);
// 注意:这里要标记上已经访问过
visited[i][j] = true;
while (!queue.isEmpty()) {
int cur = queue.poll();
int curX = cur / cols;
int curY = cur % cols;
for (int k = 0; k < 4; k++) {
int newX = curX + DIRECTIONS[k][0];
int newY = curY + DIRECTIONS[k][1];
if (inArea(newX, newY) && grid[newX][newY] == '1' && !visited[newX][newY]) {
queue.offer(newX * cols + newY);
// 特别注意:在放入队列以后,要马上标记成已经访问过,语义也是十分清楚的:反正只要进入了队列,迟早都会遍历到它
// 而不是在出队列的时候再标记,如果是出队列的时候再标记,会造成很多重复的结点进入队列,造成重复的操作,这句话如果你没有写对地方,代码会严重超时的
visited[newX][newY] = true;
}
}
}
}
private boolean inArea(int x, int y) {
return x >= 0 && x < rows && y >= 0 && y < cols;
}
}