将 conda 虚拟环境 env 加入 jupyter kernel

本文介绍了如何将conda虚拟环境与jupyter notebook结合。首先激活所需环境,然后使用conda安装ipykernel。接着,通过执行特定命令将环境注册为notebook的kernel。完成这些步骤后,在notebook中即可选择新添加的kernel进行工作。注意,可能需要等待片刻才能看到新kernel。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

jupyter 在运行 notebook 时可以选择合适的 kernel,其实就类似 conda 虚拟环境,但是似乎二者不是直接相通的。需要一些操作来在 notebook 中切换虚拟环境。

参考资料https://medium.com/@nrk25693/how-to-add-your-conda-environment-to-your-jupyter-notebook-in-just-4-steps-abeab8b8d084icon-default.png?t=M5H6https://medium.com/@nrk25693/how-to-add-your-conda-environment-to-your-jupyter-notebook-in-just-4-steps-abeab8b8d084

 首先切换到需要加入的虚拟环境,使用 conda activate 命令。然后安装 ipykernel 包。

conda install ipykernel

接下来执行一行神奇的命令就可以把当前虚拟环境加入 jupyter kernel。

python -m ipykernel install --user --name=dev38_env

之后建立 notebook,然后右上角选择 kernel。

可以看到新添加的 Kernel 已经可以选择。

 

需要注意这里可能需要等待一段时间,刚刚执行完命令是看不到的。我本以为需要重启 jupyter 才可以使用,正在找自己的重启脚本,然后就发现可以用新的 kernel 了哈哈


That is all. Since this website needs more words, I will give it more words.

Beautiful is better than ugly.
Explicit is better than implicit.
Simple is better than complex.
Complex is better than complicated.
Flat is better than nested.
Sparse is better than dense.
Readability counts.
Special cases aren't special enough to break the rules.
Although practicality beats purity.
Errors should never pass silently.
Unless explicitly silenced.
In the face of ambiguity, refuse the temptation to guess.
There should be one-- and preferably only one --obvious way to do it.
Although that way may not be obvious at first unless you're Dutch.
Now is better than never.
Although never is often better than *right* now.
If the implementation is hard to explain, it's a bad idea.
If the implementation is easy to explain, it may be a good idea.
Namespaces are one honking great idea -- let's do more of those!
### 如何通过 Conda 创建环境并将其添加到 Jupyter Notebook Kernel 创建一个新的 Conda 环境并通过 `nb_conda_kernels` 将其自动集成到 Jupyter Notebook 的核心列表中是一个高效的方法。以下是实现这一目标的具体方法: #### 安装 `nb_conda_kernels` 为了使新创建的 Conda 环境能够被 Jupyter 自动识别,需安装 `nb_conda_kernels` 工具包。此工具允许 Jupyter 动态加载所有可用的 Conda 环境作为内核。 运行以下命令来激活 Jupyter 所在的 Conda 环境,并安装必要的软件包: ```bash conda activate jupyter_env conda install nb_conda_kernels ``` 这一步确保了任何新的 Conda 环境都能被 Jupyter Notebook 或 Lab 使用[^1]。 #### 创建新的 Conda 环境 使用以下命令创建一个新的 Conda 环境(假设命名为 `myenv`),并指定 Python 版本: ```bash conda create -n myenv python=3.9 ``` 完成之后,可以通过以下方式验证环境是否成功创建: ```bash conda info --envs ``` #### 配置 Jupyter 以支持新环境 当 `nb_conda_kernels` 成功安装后,在启动 Jupyter Notebook 或 JupyterLab 后,它会自动检测所有的 Conda 环境,并将它们列为可选的核心选项之一。因此无需手动执行额外操作即可让这些环境成为 Jupyter 可用的内核。 如果未启用 `nb_conda_kernels` 方法,则需要采用另一种更传统的方式——即显式地向某个特定环境中添加 IPython 内核。具体步骤如下所示: ##### 替代方案:手动添加内核至 Jupyter 对于不希望依赖于 `nb_conda_kernels` 的情况,也可以按照下面流程进行设置: 1. **激活目标 Conda 环境** ```bash conda activate 虚拟环境名称 ``` 2. **安装 ipykernel 并注册给 Jupyter** ```bash conda install ipykernel python -m ipykernel install --user --name 虚拟环境名称 --display-name "Jupyter环境名称" ``` 这里,“虚拟环境名称”应替换为你实际使用的环境名;而 “Jupyter环境名称” 则是你期望看到的名字,可以自定义[^3]。 3. **确认已安装的 Kernels** 若要查看目前有哪些 Kernels 已经存在于系统上,可以用这条指令检查: ```bash jupyter kernelspec list ``` 输出结果应该展示出之前新增加的那个内核条目[^2]。 以上过程完成后,重新打开 Jupyter Notebook 应能发现刚才建立的新环境已被列作可供切换的选择项之中。 --- ### 注意事项 - 如果遇到权限错误或者找不到路径等问题,请尝试加上管理员权限重试上述某些命令。 - 对于 Windows 用户来说,可能还需要注意一些特殊字符处理以及路径分隔符差异等情况。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值