python 数据导入 pandas

这篇博客介绍了如何使用Python的pandas库导入和操作Excel数据,包括csv和excel格式的文件读取,以及解决xlrd库的依赖问题。重点讲解了loc和iloc的区别,强调了ix的弃用,并提供了iloc的用法示例,如按行索引和切片选择数据。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.csv格式数据导入import pandas as pd

w=pd.read.csv("数据地址")
w.describe()

w.sort_values(by="列名")

2.excel格式数据导入`

import pandas as pd

pd.read_excel("数据地址")

3.MySQL数据导入

import pandas as pdimport pymysql
dbconn=pymsql.connect(host="127.0.0.1",user="root",passwd="root",db="hexun")

sql="select * from myhexun"w=pd.read_sql(sql,conn)w.describe()

使用pandas操作Excel表单

部分参考自:pandas表单

1. 表单读取


import  pandas  as pd

#方法一:默认读取第一个表单
df=pd.read_excel('lemon.xlsx')#默认读取Excel的第一个表单
data=df.head()#默认读取前5行的数据
print("获取到所有的值:\n{0}".format(data))#格式化输出


#方法二:通过指定表单名的方式来读取
df=<
### 如何在 Python 中正确导入 Pandas 库 要在 Python 中使用 Pandas 进行数据分析,首先需要将其成功导入。以下是正确的导入方法以及一些常见的注意事项。 #### 正确导入 Pandas 的方式 通常情况下,可以通过以下代码片段将 Pandas 导入Python 脚本或交互环境中: ```python import pandas as pd ``` 上述语句的作用是将 Pandas 库引入当前环境,并为其设置一个简短的别名 `pd`,这是社区广泛接受的标准做法[^1]。这样可以简化后续调用 Pandas 功能时的代码书写。 #### 常见问题及其解决方案 1. **未安装 Pandas** 如果尝试运行以上代码却收到模块不存在错误 (`ModuleNotFoundError`),则说明尚未安装 Pandas。此时可通过 pip 或 conda 安装它: 使用 pip 安装: ```bash pip install pandas ``` 若使用 Anaconda,则可执行以下命令: ```bash conda install pandas ``` 2. **版本不匹配** 不同项目可能依赖特定版本的 Pandas。为了确认所使用的具体版本号,可以用如下代码验证: ```python import pandas as pd print(pd.__version__) ``` 上述操作可以帮助开发者确保当前环境下的 Pandas 版本满足需求。 3. **命名冲突** 尽管约定俗成地采用 `pd` 作为 Pandas 别名,但如果其他部分代码已经定义了一个名为 `pd` 的变量或者函数,可能会引发覆盖问题。这种情形下可以选择更改别名,例如: ```python import pandas as pds ``` 4. **性能优化考虑** 对于某些高性能计算场景,尽管 Pandas 提供了丰富的功能集,但在纯粹数值运算方面仍推荐优先选用 NumPy 来完成任务[^2]。不过,在大多数涉及表格型数据的操作场合中,Pandas 是更为合适的选择。 5. **初学者资源指引** 针对刚接触 Pandas 的用户来说,官方文档提供了一份非常实用的新手指南链接:<http://pandas.pydata.org/pandas-docs/stable/10min.html>。这份资料涵盖了核心概念与基本语法要点,非常适合快速上手[^3]。 6. **索引自定义支持** 默认状态下创建 Series 数据结构实例时,Pandas 自动分配整数序列充当索引;然而实际应用过程中往往希望赋予更具意义性的标签形式替代默认编号。幸运的是,该框架允许我们手动设定 index 属性实现这一目标[^4]。 ```python custom_index_series = pd.Series([1, 2, 3], index=['a', 'b', 'c']) print(custom_index_series) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值