数据结构中十大排序算法 详解

目录

排序算法概述

关于时间复杂度

1、冒泡排序 

1.1 概述

1.2 算法步骤

1.3 动图演示

1.4 代码实现

2、选择排序

2.1 概述

2.2 算法步骤

2.3 动图演示

2.4 代码实现 

3、插入排序

3.1 概述

3.2 算法步骤

3.3 动图演示

3.4 代码实现

4、希尔排序

4.1 概述

4.2 算法步骤

4.3 动图演示

4.4 代码实现

5、归并排序

5.1 概述

5.2 算法步骤

5.3 动图演示

5.4 代码实现

6、快速排序

6.1 概述

6.2 算法步骤

6.3 动图演示

6.4 代码实现

7、堆排序

7.1 概述

7.2 算法步骤

7.3 动图演示

7.4 代码实现

8、计数排序

8.1 概述

8.2 算法步骤

8.3 动图演示

8.4 代码实现

9、桶排序

9.1 概述

9.2 什么时候最快/最慢

9.3 图示

9.4 代码实现

 10、基数排序

10.1 概述

10.2 基数排序 vs 计数排序 vs 桶排序

10.3 动图演示

10.4 代码实现

 


排序算法概述

        排序算法可以分为内部排序和外部排序,内部排序是数据记录在内存中进行排序,而外部排序是因排序的数据很大,一次不能容纳全部的排序记录,在排序过程中需要访问外存。常见的内部排序算法有:插入排序、希尔排序、选择排序、冒泡排序、归并排序、快速排序、堆排序、基数排序等。用一张图概括:

关于时间复杂度

平方阶 (O(n2)) 排序 各类简单排序:直接插入、直接选择和冒泡排序。

线性对数阶 (O(nlog2n)) 排序 快速排序、堆排序和归并排序;

O(n1+§)) 排序,§ 是介于 0 和 1 之间的常数。 希尔排序

线性阶 (O(n)) 排序 基数排序,此外还有桶、箱排序。

关于稳定性

稳定的排序算法:冒泡排序、插入排序、归并排序和基数排序。

不是稳定的排序算法:选择排序、快速排序、希尔排序、堆排序。

名词解释:

  • n:数据规模
  • k:"桶"的个数
  • In-place:占用常数内存,不占用额外内存
  • Out-place:占用额外内存
  • 稳定性:排序后 2 个相等键值的顺序和排序之前它们的顺序相同

1、冒泡排序 

1.1 概述

        冒泡排序(Bubble Sort)也是一种简单直观的排序算法。它重复地走访过要排序的数列,一次比较两个元素,如果他们的顺序错误就把他们交换过来。走访数列的工作是重复地进行直到没有再需要交换,也就是说该数列已经排序完成。这个算法的名字由来是因为越小的元素会经由交换慢慢"浮"到数列的顶端。

        作为最简单的排序算法之一,冒泡排序给人的感觉就像 Abandon 在单词书里出现的感觉一样,每次都在第一页第一位,所以最熟悉。冒泡排序还有一种优化算法,就是立一个 flag,当在一趟序列遍历中元素没有发生交换,则证明该序列已经有序。但这种改进对于提升性能来说并没有什么太大作用。

1.2 算法步骤

  1. 相邻的元素两两比较,大的放右边,小的放左边

  2. 第一轮比较完毕之后,最大值就已经确定,第二轮可以少循环一次,后面以此类推

  3. 如果数组中有n个数据,总共我们只要执行n-1轮的代码就可以

1.3 动图演示

1.4 代码实现

public class BubbleSort implements IArraySort {

    @Override
    public int[] sort(int[] sourceArray) throws Exception {
        // 对 arr 进行拷贝,不改变参数内容
        int[] arr = Arrays.copyOf(sourceArray, sourceArray.length);

        for (int i = 1; i < arr.length; i++) {
            // 设定一个标记,若为true,则表示此次循环没有进行交换,也就是待排序列已经有序,排序已经完成。
            boolean flag = true;

            for (int j = 0; j < arr.length - i; j++) {
                if (arr[j] > arr[j + 1]) {
                    int tmp = arr[j];
                    arr[j] = arr[j + 1];
                    arr[j + 1] = tmp;

                    flag = false;
                }
            }

            if (flag) {
                break;
            }
        }
        return arr;
    }
}

2、选择排序

2.1 概述

        选择排序是一种简单直观的排序算法,无论什么数据进去都是 O(n²) 的时间复杂度。所以用到它的时候,数据规模越小越好。唯一的好处就是不占用额外的内存空间。

2.2 算法步骤

2.3 动图演示

  1. 从0索引开始,跟后面的元素一一比较

  2. 小的放前面,大的放后面

  3. 第一次循环结束后,最小的数据已经确定

  4. 第二次循环从1索引开始以此类推

  5. 第三轮循环从2索引开始以此类推

  6. 第四轮循环从3索引开始以此类推。

2.4 代码实现 

public class SelectionSort implements IArraySort {

    @Override
    public int[] sort(int[] sourceArray) throws Exception {
        int[] arr = Arrays.copyOf(sourceArray, sourceArray.length);

        // 总共要经过 N-1 轮比较
        for (int i = 0; i < arr.length - 1; i++) {
            int min = i;

            // 每轮需要比较的次数 N-i
            for (int j = i + 1; j < arr.length; j++) {
                if (arr[j] < arr[min]) {
                    // 记录目前能找到的最小值元素的下标
                    min = j;
                }
            }

            // 将找到的最小值和i位置所在的值进行交换
            if (i != min) {
                int tmp = arr[i];
                arr[i] = arr[min];
                arr[min] = tmp;
            }

        }
        return arr;
    }
}

3、插入排序

3.1 概述

        插入排序的代码实现虽然没有冒泡排序和选择排序那么简单粗暴,但它的原理应该是最容易理解的了,因为只要打过扑克牌的人都应该能够秒懂。插入排序是一种最简单直观的排序算法,它的工作原理是通过构建有序序列,对于未排序数据,在已排序序列中从后向前扫描,找到相应位置并插入。

        插入排序和冒泡排序一样,也有一种优化算法,叫做拆半插入。

3.2 算法步骤

  1. 将0索引的元素到N索引的元素看做是有序的,把N+1索引的元素到最后一个当成是无序的。
  2. 遍历无序的数据,将遍历到的元素插入有序序列中适当的位置,如遇到相同数据,插在后面。
  3. N的范围:0~最大索引

3.3 动图演示

3.4 代码实现

public class InsertSort implements IArraySort {

    @Override
    public int[] sort(int[] sourceArray) throws Exception {
        // 对 arr 进行拷贝,不改变参数内容
        int[] arr = Arrays.copyOf(sourceArray, sourceArray.length);

        // 从下标为1的元素开始选择合适的位置插入,因为下标为0的只有一个元素,默认是有序的
        for (int i = 1; i < arr.length; i++) {

            // 记录要插入的数据
            int tmp = arr[i];

            // 从已经排序的序列最右边的开始比较,找到比其小的数
            int j = i;
            while (j > 0 && tmp < arr[j - 1]) {
                arr[j] = arr[j - 1];
                j--;
            }

            // 存在比其小的数,插入
            if (j != i) {
                arr[j] = tmp;
            }

        }
        return arr;
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Hanshy123

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值