opencv-python实战项目八:根据颜色抠出图片中感兴趣区域


一,简介

本项目旨在开发一个基于OpenCV的图像处理工具,实现根据颜色从图片中自动抠图的功能。通过该项目,用户可以轻松指定一种颜色,系统将自动识别并提取该颜色的所有像素,生成新的图像。

二,实现方案

本方案基于OpenCV的图像处理,通过指定颜色范围,从输入图像中自动识别并提取该颜色的所有像素,生成新的图像。首先,通过颜色空间转换和掩码生成,实现颜色识别;然后,通过形态学操作修正掩码;最后抠出图像中对应掩码的区域。

三、算法实现步骤

3.1 cv2.inRange()选择抠出的颜色
在这里插入图片描述将图像转化为hsv颜色空间,按照上表中的数值进行颜色选择,本次选择的颜色为红色,使用的函数为cv2.inRange(),
cv2.inRange 是 OpenCV 中的一个函数,用于生成一个掩码,该掩码包含在指定范围内的所有像素。

函数介绍:
src: 输入的图像,可以是灰度图或彩色图。
lowerb: 表示颜色范围的最低边界。它是一个数组,包含三个值:蓝色通道的下限、绿色通道的下限和红色通道的下限。
upperb: 表示颜色范围的最高边界。它也是一个数组,包含三个值:蓝色通道的上限、绿色通道的上限和红色通道的上限。
cv2.inRange 函数返回一个与 src 图像大小相同的掩码图像。在这个掩码图像中,像素值在 lowerb 和 upperb 范围内的像素会被设置为255(白色),表示这些像素属于指定的颜色范围;而其他像素则被设置为0(黑色),表示这些像素不属于指定的颜色范围。

使用方法:

hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)
# 生成检测红色区域的掩码
lower_red = np.array([0, 43, 46])
upper_red = np.array([10, 255, 255])
mask1 = cv2.inRange(hsv, lower_red, upper_red)
lower_red = np.array([156, 43, 46]
### 关于 OpenCV-Python 实战教程和项目示例 #### 1. OpenCV-Python 的基本功能与应用领域 OpenCV 是一个开源计算机视觉库,广泛应用于图像处理、视频分析以及机器学习等领域。通过 Python 接口 (cv2),开发者可以轻松实现复杂的图像处理任务[^1]。 #### 2. 深度学习在 OpenCV 中的应用实例 深度学习技术已经深刻影响了计算机视觉的发展方向,在目标检测、图像分类等方面表现卓越。以下是几个基于 OpenCV 和深度学习的经典实战案例: - **图像分类** 利用卷积神经网络(CNN),可以通过训练数据集完成对不同类别的图片进行自动分类的任务。例如,使用 Keras 或 TensorFlow 构建 CNN 模型并将其集成到 OpenCV 流程中[^3]。 - **目标检测** 结合预训练模型如 YOLOv3 或 SSD,能够快速部署实时物体检测系统。这些模型通常支持多种常见类别标注,并能高效定位感兴趣区域- **形态学操作去除噪声** 形态学变换是一种重要的图像处理方法,可用于清理二值化后的图像中的噪音点或者填补孔洞等问题。下面是一个简单的例子展示如何利用 `morphologyEx` 函数执行开闭运算来改善掩码质量[^4]: ```python import numpy as np import cv2 # 创建结构元素 kernel = np.ones((9, 9), np.uint8) kernel2 = np.ones((21, 21), np.uint8) # 执行开运算以消除小型白色噪点 opening = cv2.morphologyEx(mask, cv2.MORPH_OPEN, kernel) # 随后关闭运算填满剩余的小黑斑 close = cv2.morphologyEx(opening, cv2.MORPH_CLOSE, kernel2) ``` 此代码片段展示了如何定义两个不同的核大小来进行连续两次形态学转换从而优化最终输出效果。 #### 3. 更多资源推荐 对于希望深入研究 OpenCV 及其结合深度学习应用场景的朋友来说,《OpenCV-Python 教程》系列文章提供了详尽指导;另外还有专门针对腾讯等公司招聘需求设计的相关练习题目可供参考[^2]。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值