阅读此文:你将学会如何使用X-AnyLabeling进行数据集的AI标记
🌈Hi,小伙伴们~ 👉关注我,带您了解更多的 Python 实用技巧
前面的文章中,我们已经介绍了如何利用YOLO模型进行火焰目标检测,但在数据集的准备过程中,大量的数据集标注工作耗时又费力,有没有提升效率或用AI工具来辅助标注了?
🎯今天教大家用X-Anylabeling这款高效率标注软件,能轻松解决这个课题!
什么是X-Anylabeling
🏆X-Anylabeling是由CVHub520团队开发的一个强大的图像标注开源工具,首次公开发布是在2023年,这款软件专为加快数据标注过程而设计,且仍在持续更新发布新的版本,集成新的模型,方便好用
🔍 为啥选X-AnyLabeling ?
-
智能标注:能AI自动标注,大幅减少工作量
-
界面友好:可视化操作,小白也能快速上手
-
免费开源:GitHub开源项目,持续更新维护
-
能跨平台:Windows、Linux、Mac都能用
-
支持多种格式:YOLO、COCO、Pascal VOC等主流格式统统支持
🔍 X-AnyLabeling下载与安装
软件下载路径:
☘️推荐去官方GitHub仓库下载链接如下:官方下载链接
官方下载界面,选择内容如下:
☘️下载解压后,软件的文件架构如下:
软件的安装步骤:
☘️先conda创建1个虚拟环境并启动,命令如下:
#创建虚拟环境
conda create -n anylabeling python=3.10
#激活环境
conda activate anylabeling
☘️移到对应文件夹下如 F:\X-AnyLabeling-main
☘️安装软件所需的依赖包,命令如下:
pip install -r requirements.txt
☘️也可清华/阿里的镜像源:
#清华镜像源
pip install -r requirements.txt -i https://pypi.tuna.tsinghua.edu.cn/simple
#阿里镜像源
pip install -r requirements.txt -i <https://mirrors.aliyun.com/pypi/simple>
☘️安装完,输入下面命令启动运行软件:
python anylabeling/app.py
☘️打开的软件界面,如下图所示
☘️新版软件要求Python版本不低于3.10,运行打开命令若报错可能是依赖包未正确安装,修正安装即可。若觉得命令行打开麻烦,也可下载别人已打包好的.exe文件,或者自己动手打包一个便于后续使用
🛠️ 六步搞定AI智能标注
🌱下面就是AI自动标注的干货啦!按着下图这六个步骤,就能让你的标注效率飞起来~
步骤①:用X-AnyLabeling标注少量数据集
✅打开软件,点击"Open Dir"选择需标注图片的文件夹,用左侧工具栏手动标注一些样本(建议至少20-30个)标注完成后导出为YOLO格式
步骤②:训练初始模型(.bt文件)
✅接下来要用第①步标注好的小数据集训练一个初始模型权重,划分好数据集和训练集,做好数据集和模型配置后,以yolov11为例进行训练,命令如下:
yolo cfg=ultralytics/cfg/default.yaml
✅训练完会在对应train的weights权重文件下生成best.bt文件,如下所示:
步骤③:将模型.bt文件转换为.onnx
✅接下来要用第②步训练好的模型权重进行格式转换,转成软件所需的onnx,可以用YOLO模型自动带的导出方法,如下代码所示:
import os
import glob
from ultralytics import YOLO
# 假设你想遍历的文件夹路径是 'path_to_folder'
path_to_folder = "runs/detect/train18/weights/"
# 使用glob模块找到所有.pt文件
for pt_file in glob.glob(os.path.join(path_to_folder, "best.pt")):
model = YOLO(pt_file)
# Export model
success = model.export(format="onnx")
✅转换完成后,会在对应文件夹下会生产一个best.onnx文件,如下图所示:
步骤④:修改模型配置yaml文件
✅创建一个或copy一个模型配置yaml文件,并依据你的标准需求修改文件内红色框中内容,如下图所示
✅注意:X-AnyLabeling目前type类型仅支持部分的YOLO 变种如 yolov5、yolov8、yolov9,同时需将这个文件与第③步生成的best.onnx文件放到同一个文件夹下,如下图所示:
步骤⑤:加载自定义模型进行AI批量标注
✅在X-AnyLabeling中选择左下角的AI模式 → 再加载自定义模型→ 再选择步骤④的yaml文件
✅点击"Run"就开始自动标注,也可以调整置信度阈值等参数优化结果
步骤⑥:修正标注与导出标签
✅自动标注完成后:使用(← → 键切换图片)对AI不准确的图片进行修正,修正完后就可导出标注结果,建立一个标签classes.txt文件,导出yolo标签时选择它
✅导出后会自动生成一个lables的标签文件夹,内存放着标注的内容
✨至此,AI自动标注完成可以进行数据集的划分与训练
👉附上:X-AnyLabeling官方说明文档官方说明文档
🏁结语:
🚀希望这篇教程能帮您了解X-AnyLabeling~
👉若觉得有用,收藏起来,需要时随时翻出来~
📌也可关注微信 公众号:“ Python-伍六七 ”,及时获取Python 实用技巧 与 干货案例 !