微软推出了最佳 AI 代理课程,并在 Github 上提供了免费的 11 节课程,让你快速了解构建 AI 代理的基础知识。
Github:
https://github.com/microsoft/ai-agents-for-beginners/
课程目录
1/ AI代理概述及其应用场景
2/ 探索AI代理框架
3/ 理解AI代理设计模式
4/ 工具使用设计模式
5/ 代理增强生成(RAG)
6/ 构建可信赖的AI代理
7/ 规划设计模式
8/ 多代理设计模式
9/ 元认知设计模式
10/ 生产中的AI代理
11/ 带有MCP的AI代理
1/ AI代理概述及其应用场景
文本 & 代码:
https://github.com/microsoft/ai-agents-for-beginners/blob/main/01-intro-to-ai-agents/
视频:
https://youtu.be/3zgm60bXmQk?si=z8QygFvYQv-9WtO1
扩展学习:
https://aka.ms/ai-agents-beginners/collection?WT.mc_id=academic-105485-koreyst
课程简介
“AI Agents for Beginners”课程介绍了构建AI Agents的基本知识和应用示例。
课程内容
课程介绍了AI Agents的基本概念、用例和设计Agentic解决方案的基本构建块。
学习目标
理解AI Agent的概念及其与其他AI解决方案的区别。
学会如何高效应用AI Agents。
能够为用户和客户设计高效的Agentic解决方案。
定义AI Agents
AI Agents是系统,使得大模型(LLMs)能够通过访问工具和知识来执行操作。
AI Agents的组成部分
环境:AI Agent操作的定义空间。
传感器:用于收集和解释环境的信息。
执行器:用于执行操作以改变环境。
LLMs在AI Agents中的作用
LLMs能够解释人类语言和数据,使得它们能够理解环境信息并定义计划来改变环境。
AI Agents的不同类型
简单反射代理:基于预定义规则执行即时操作。
基于模型的反射代理:基于世界模型和对其变化的反应执行操作。
目标导向代理:通过解释目标并确定实现目标的操作来创建计划。
效用导向代理:考虑偏好并权衡权衡来实现目标。
学习代理:通过反馈和调整来改进。
层次代理:具有多个层级代理,高级代理将任务分解为子任务。
多代理系统(MAS):代理独立完成任务,合作或竞争。
使用AI Agents的时机
开放式问题:LLM需要确定完成任务的步骤。
多步骤过程:需要复杂的工具和信息的多步骤任务。
随着时间的推移的改进:代理可以通过反馈改进。
Agentic解决方案的基本构建块
Agent开发:使用Azure AI Agent Service定义工具、操作和行为。
Agentic模式:通过多步骤的交互来提示LLM。
Agentic框架:提供模板和插件来实现代理模式,如AutoGen和Semantic Kernel。
2/ 探索AI代理框架
文本 & 代码:
https://github.com/microsoft/ai-agents-for-beginners/blob/main/02-explore-agentic-frameworks
视频:
https://youtu.be/ODwF-EZo_O8?si=Vawth4hzVaHv-u0H
扩展学习:
https://aka.ms/ai-agents-beginners/collection?WT.mc_id=academic-105485-koreyst
课程简介
“Explore AI Agent Frameworks”课程介绍了如何创建、部署和管理AI Agents的软件平台。
学习目标
理解AI Agent Frameworks在AI开发中的作用。
学会如何利用AI Agent Frameworks构建智能Agent。
了解AI Agent Frameworks的关键能力。
了解AutoGen、Semantic Kernel和Azure AI Agent Service的差异。
AI Agent Frameworks的作用
AI Agent Frameworks不仅仅是AI Frameworks,它们使得能够创建智能Agent,这些Agent可以与用户、其他Agent和环境互动以实现特定目标。
关键能力包括Agent协作与协调、任务自动化与管理、上下文理解与适应等。
快速原型、迭代和改进Agent能力
利用模块化组件、协作工具和实时学习来快速原型和迭代。
示例代码展示了如何使用预构建的AI连接器和插件来实现这些功能。
AutoGen
开源框架,专注于事件驱动的分布式Agent应用。
关键概念包括Agent、Persona、Functions和Data。
适用于代码生成、数据分析任务等。
Semantic Kernel
企业级AI编排SDK,包含AI和内存连接器。
关键概念包括AI连接器、插件、提示函数和内存管理。
适用于自然语言理解、内容生成等。
Azure AI Agent Service
Azure Foundry中的平台和部署服务,支持多种模型和工具。
关键概念包括Agent、线程和消息。
适用于企业应用,提供安全、可扩展和灵活的Agent部署。
框架的差异
AutoGen:专注于事件驱动的分布式Agent应用,适合实验和原型开发。
Semantic Kernel:生产就绪的Agent库,适合企业级应用。
Azure AI Agent Service:Azure Foundry中的平台服务,适合企业级AI Agent部署。
集成现有Azure生态系统工具
可以直接集成现有Azure生态系统工具,如Azure AI Foundry、Azure Functions等。
AutoGen和Semantic Kernel也可以通过Azure SDKs或作为Azure AI Agent Service的协调器来集成。
3/ 理解AI代理设计模式
文本 & 代码:
https://github.com/microsoft/ai-agents-for-beginners/blob/main/03-agentic-design-patterns/
视频:
https://youtu.be/m9lM8qqoOEA?si=BIzHwzstTPL8o9GF
扩展学习:
https://aka.ms/ai-agents-beginners/collection?WT.mc_id=academic-105485-koreyst
概述
构建AI代理系统有许多方法。由于生成式AI设计中的模糊性是其特征,工程师有时难以找到切入点。我们创建了一组以人为中心的用户体验设计原则,以帮助开发人员构建以客户为中心的代理系统,解决其业务需求。这些设计原则不是规定性的架构,而是为定义和构建代理体验的团队提供的起点。
总体而言,代理应该:
拓展和扩大人类能力(头脑风暴、解决问题、自动化等)
填补知识空白(获取知识领域的信息、翻译等)
促进和支持我们个人喜欢与他人的合作方式
使我们成为更好的自己(例如,生活教练/任务管理员,帮助我们学习情感调节和正念技能,建立韧性等)
学习目标
完成本课程后,您将能够:
解释什么是代理设计原则
解释使用代理设计原则的指南
理解如何使用代理设计原则构建代理
代理设计原则
代理(空间)
代理运行的环境。这些原则指导我们如何在物理和数字世界中设计代理。
连接,而不是压缩 - 帮助人们连接到其他人、事件和可操作的知识,以实现合作和连接。
代理帮助连接事件、知识和人
代理使人们更亲近。它们不旨在取代或贬低人。
容易访问但有时不可见 - 代理主要在后台运行,只在相关和适当时提醒我们。
代理对授权用户在任何设备或平台上都易于发现和访问
代理支持多模态输入和输出(声音、语音、文本等)
代理可以在前台和后台之间无缝切换;在主动和被动之间切换,取决于其感知用户需求
代理可能以不可见的形式运行,但其后台过程路径和与其他代理的合作是用户可控和透明的
代理(时间)
代理在时间上如何运行。这些原则指导我们如何设计代理在过去、现在和未来之间进行互动。
过去:反思包括状态和背景的历史
代理提供基于对历史数据的分析的更相关结果,不仅仅是事件、人或状态
代理创建来自过去事件的连接,并积极反思记忆以参与当前情况
现在:提醒而不是通知
代理体现了与人互动的全面方法。当事件发生时,代理超越了静态通知或其他静态形式。代理可以简化流程或动态生成提示,在恰当的时刻引导用户的注意力
代理根据上下文环境、社会和文化变化,并根据用户意图传递信息
代理的互动可以是逐步的,随着时间的推移逐渐发展/复杂,以长期激励用户
未来:适应和演变
代理适应各种设备、平台和模态
代理适应用户行为、可访问性需求,并可自由定制
代理通过持续的用户互动塑造和演变
代理(核心)
这些是代理设计的关键元素。
拥抱不确定性但建立信任
代理的不确定性是预期的。不确定性是代理设计的关键元素
信任和透明度是代理设计的基础层
人类控制代理的开/关,代理的状态始终清晰可见
实施这些原则的指南
在使用前面的设计原则时,请遵循以下指南:
透明度:告知用户AI参与其中,如何运作(包括过去的动作),以及如何提供反馈和修改系统。
控制:使用户能够自定义、指定偏好和个性化,并对系统及其属性(包括忘记的能力)进行控制。
一致性:在设备和端点之间力求一致的、多模态的体验。尽可能使用熟悉的UI/UX元素(例如,语音交互的麦克风图标)并尽可能减轻客户的认知负担(例如,简洁的响应、视觉辅助和“了解更多”内容)。
如何使用这些设计原则和指南设计旅行代理
想象您在设计一个旅行代理,以下是如何考虑使用设计原则和指南:
透明度:让用户知道旅行代理是一个AI启用的代理。提供一些基本说明,例如如何开始(例如,“你好”消息、示例提示)。在产品页面上明确说明。显示用户过去询问的提示列表。明确说明如何提供反馈(点赞和点踩按钮、发送反馈按钮等)。明确说明代理的使用或主题限制。
控制:确保用户在创建代理后可以修改代理,例如系统提示。使用户能够选择代理的冗长程度、写作风格和任何代理不应讨论的警告。允许用户查看和删除任何相关文件或数据、提示和过去的对话。
一致性:确保共享提示、添加文件或照片和标记某人或某物的图标是标准且可识别的。使用回形针图标表示与代理的文件上传/共享,使用图像图标表示图形上传。
4/ 工具使用设计模式
文本 & 代码:
https://github.com/microsoft/ai-agents-for-beginners/blob/main/04-tool-use/
视频:
https://youtu.be/vieRiPRx-gI?si=2z6O2Xu2cu_Jz46N
扩展学习:
https://aka.ms/ai-agents-beginners/collection?WT.mc_id=academic-105485-koreyst
工具使用设计模式
定义:允许大模型(LLMs)与外部工具交互以实现特定目标。
功能:通过调用函数或API,执行任务,获取信息或做出决策。
应用场景
动态信息检索:查询API或数据库获取最新数据(如股票价格或天气预报)。
代码执行与解释:解决数学问题、生成报告或进行模拟。
工作流程自动化:集成任务调度器、邮件服务或数据管道。
客户支持:与CRM系统、工单平台或知识库互动,解决用户查询。
内容生成与编辑:使用语法检查器、文本摘要器或内容安全评估工具辅助内容创作。
实现工具使用设计模式的关键元素
函数/工具模式:定义工具的名称、目的、参数和输出。
函数执行逻辑:根据用户意图和对话上下文,确定何时调用工具。
消息处理系统:管理用户输入、LLM响应、工具调用和工具输出之间的对话流。
工具集成框架:连接代理与简单函数或复杂外部服务。
错误处理与验证:处理工具执行失败、验证参数和管理意外响应。
状态管理:跟踪对话上下文、前次工具交互和持久数据,以确保多轮交互的一致性。
函数/工具调用详解
实现步骤:
初始化支持函数调用的LLM模型。
定义并传递函数模式。
实现并执行函数代码。
处理模型的响应,提取函数名称和参数,执行任务并返回最终结果。
使用代理框架的工具使用示例
Semantic Kernel:自动描述函数和参数,简化函数调用流程。
Azure AI Agent Service:提供自动工具调用、安全管理数据、预建工具等功能。
构建可信赖AI代理的特殊考虑
安全性:动态生成的SQL存在注入风险,可以通过配置数据库只读权限来缓解。
环境保护:在企业场景中,数据通常从操作系统提取并转换为只读数据库或数据仓库,确保数据安全和应用只读访问。
5/ 代理增强生成(RAG)
文本 & 代码:
https://github.com/microsoft/ai-agents-for-beginners/blob/main/05-agentic-rag/
视频:
https://youtu.be/WcjAARvdL7I?si=gKPWsQpKiIlDH9A3
扩展学习:
https://aka.ms/ai-agents-beginners/collection?WT.mc_id=academic-105485-koreyst
理解Agentic RAG:
新兴范式:大模型(LLMs)自主规划下一步,从外部数据源获取信息。
区别:不同于静态的RAG模式,Agentic RAG涉及迭代调用LLM,中间插入工具或函数调用和结构化输出。
理解迭代制造者-检查者风格:
迭代循环:LLM的迭代调用,中间插入工具或函数调用和结构化输出,以提高准确性和处理不规则查询。
掌握推理过程:
自主决策:系统在不依赖预定义路径的情况下,自主决定如何解决问题。
步骤示例:检索市场趋势报告、识别竞争对手数据、相关内部销售指标、综合发现并评估策略。
迭代循环、工具集成和记忆:
循环交互模式:用户目标提交给LLM,调用工具获取上下文,评估和优化,重复直到满意。
记忆和状态:系统保持状态和记忆,避免重复循环,做出更明智的决策。
处理失败模式和自我纠正:
自我纠正机制:在遇到失败时,系统可以迭代和重新查询,使用诊断工具,在必要时回退到人类监督。
代理能力的界限:
领域特定自主性:代理能力限于人类开发者提供的工具、数据源和策略。
依赖基础设施:系统能力依赖于开发者集成的工具和数据。
遵守守卫:遵守伦理指导方针、合规规则和业务政策。
实际应用和价值:
正确性优先环境:在需要反复验证事实和多源查询的场景中,代理模型可以反复验证和优化查询。
复杂数据库交互:在需要自主优化查询的场景中,系统可以自动优化查询。
扩展工作流:代理模型可以在获取新信息时持续调整策略。
治理、透明度和信任:
可解释的推理:系统可以提供查询、来源和推理步骤的审计轨迹。
偏见控制和平衡检索:开发者可以调整检索策略,确保平衡和代表性数据源。
人类监督和合规:在敏感任务中,人类审查仍然至关重要。
6/ 构建可信赖的AI代理
文本 & 代码:
https://github.com/microsoft/ai-agents-for-beginners/blob/main/06-building-trustworthy-agents/
视频:
https://youtu.be/iZKkMEGBCUQ?si=jZjpiMnGFOE9L8OK
扩展学习:
https://aka.ms/ai-agents-beginners/collection?WT.mc_id=academic-105485-koreyst
设计系统消息框架
Step 1: 创建元系统消息
使用模板设计,便于快速生成多个系统消息。
示例元系统消息:设置角色、任务、指导原则。
Step 2: 创建基本系统消息
描述AI代理的角色、任务和职责。
示例:旅行代理助手,包括查询航班、预订航班、取消航班等任务。
Step 3: 提供基本系统消息
优化系统消息,使其更适合引导AI代理。
示例:详细描述公司名称、角色、目标、关键职责、互动指导、额外说明。
Step 4: 迭代和改进
持续改进系统消息,以适应不同代理和用例。
理解和应对威胁
任务和指令攻击
攻击者通过操纵输入来改变AI代理的指令或目标。
缓解措施:执行验证检查和输入过滤,限制对话轮次。
访问关键系统
攻击者利用AI代理访问存储敏感数据的系统。
缓解措施:按需访问,确保通信安全,实施身份验证和访问控制。
资源和服务过载
攻击者通过高频请求使服务崩溃或产生高成本。
缓解措施:限制请求数量,限制对话轮次和请求次数。
知识库污染
攻击者污染AI代理使用的数据,导致偏见或意外响应。
缓解措施:定期验证数据,确保数据访问安全,仅受信任人员更改。
级联错误
攻击者引发系统错误,导致更广泛的系统失败。
缓解措施:在受限环境(如Docker容器)操作,创建备用机制和重试逻辑。
人机协作
Human-in-the-Loop
用户可以在运行过程中提供反馈,作为多代理系统中的代理。
7/ 规划设计模式
文本 & 代码:
https://github.com/microsoft/ai-agents-for-beginners/blob/main/07-planning-design/
视频:
https://youtu.be/kPfJ2BrBCMY?si=6SC_iv_E5-mzucnC
扩展学习:
https://aka.ms/ai-agents-beginners/collection?WT.mc_id=academic-105485-koreyst
明确整体目标和分解任务
明确整体目标,例如生成一个三天的旅行行程。
将复杂任务分解为可管理的子任务,例如:预订机票、预订酒店、租车、个性化建议等。
结构化输出
使用结构化输出(如 JSON)以便于下游智能体或服务解析和处理。
使用 Pydantic 和 Azure AI Chat Completion Client 生成和处理结构化输出。
多智能体协调
通过一个语义路由智能体接收用户请求,并将任务分解为子任务。
将子任务分配给专门的智能体(如机票预订、酒店预订等)。
通过组合输出生成最终的行程计划。
迭代规划
任务的执行可能需要根据实际情况进行反复调整,例如根据用户反馈重新规划。
8/ 多代理设计模式
文本 & 代码:
https://github.com/microsoft/ai-agents-for-beginners/blob/main/08-multi-agent/
视频:
https://youtu.be/V6HpE9hZEx0?si=rMgDhEu7wXo2uo6g
扩展学习:
https://aka.ms/ai-agents-beginners/collection?WT.mc_id=academic-105485-koreyst
多智能体系统应用场景
大任务量:将大任务分解为小任务,分配给不同智能体处理。
复杂任务:将复杂任务分解为子任务,不同智能体专注于不同部分。
多样化专长:不同智能体拥有不同专长,能更有效处理任务。
多智能体系统的优势
专业化:每个智能体专注于特定任务。
可扩展性:通过增加智能体扩展系统。
容错性:单个智能体故障不会影响整体系统。
实施多智能体系统的构建模块
智能体通信:定义通信协议和方法。
协调机制:确保智能体之间的协调。
智能体架构:定义智能体内部结构和决策机制。
可见性:通过日志、监控和可视化工具监控智能体活动。
多智能体模式:选择适合的模式(如集中式、分布式或混合式)。
人机协作:定义何时需要人类干预。
多智能体系统的具体模式
群聊:适用于团队协作、客户支持等。
任务传递:适用于客户支持、任务管理等。
协同过滤:适用于推荐系统,如股票推荐。
多智能体系统的案例分析
退款流程:涉及客户代理、卖家代理、支付代理、解决方案代理、合规代理等。
通用代理:如运输代理、反馈代理、升级代理、通知代理、分析代理、审计代理、报告代理、知识代理、安全代理、质量代理等。
知识检查问题
问题:何时应考虑使用多智能体系统?
A1: 当你有小任务量且任务简单。
A2: 当你有大任务量。
A3: 当你有简单任务。
9/ 元认知设计模式
文本 & 代码:
https://github.com/microsoft/ai-agents-for-beginners/blob/main/09-metacognition/
视频:
https://youtu.be/His9R6gw6Ec?si=8gck6vvdSNCt6OcF
扩展学习:
https://aka.ms/ai-agents-beginners/collection?WT.mc_id=academic-105485-koreyst
概述
介绍元认知(Metacognition)在AI代理中的应用。
元认知指代理能够评估和调整其行为,提高问题解决和决策能力。
重要性
自我反思: 代理可以评估自身表现,找出需要改进的地方。
适应性: 代理可以根据反馈和变化的环境调整策略。
错误纠正: 代理可以自动检测和纠正错误,提高准确性。
资源管理: 代理可以优化时间和计算资源的使用。
元认知的应用
旅行代理: 一个示例,展示如何通过用户反馈和策略调整来改进旅行推荐。
规划
规划步骤: 定义任务、收集用户偏好、获取信息、生成推荐、收集反馈、调整推荐。
校正RAG系统
RAG: 结合检索和生成模型来获取相关信息。
校正RAG: 使用RAG技术纠正错误,提高代理的准确性。
预先加载上下文
预先加载: 在处理查询之前加载相关背景信息,提高响应速度。
使用大语言模型进行重排和评分
LLM: 使用大模型对检索到的文档进行重排和评分,提高相关性。
代码生成代理
代码生成: 使用AI模型生成和执行代码,自动化任务。
使用SQL作为RAG技术
SQL: 使用SQL查询从数据库中检索相关数据,增强代理的决策能力。
元认知示例
酒店推荐代理: 一个示例,展示代理如何通过反思和调整策略来改进酒店推荐。
10/ 生产中的AI代理
文本 & 代码:
https://github.com/microsoft/ai-agents-for-beginners/blob/main/10-ai-agents-production/
视频:
https://youtu.be/l4TP6IyJxmQ?si=31dnhexRo6yLRJDl
扩展学习:
https://aka.ms/ai-agents-beginners/collection?WT.mc_id=academic-105485-koreyst
部署AI Agent的有效策略:
评估AI Agent:在部署前、过程中和之后进行全面评估,包括模型请求、用户意图识别、工具选择、响应解释和用户反馈。
避免常见问题:
不一致性:优化提示词,明确目标;考虑将任务分解为子任务,由多个Agent处理。
无限循环:设定明确的终止条件;对复杂任务使用更大的模型。
工具调用问题:外部测试工具输出,优化参数和提示词。
多Agent系统不一致:优化每个Agent的提示词,建立层级系统。
控制成本的策略:
缓存响应:识别常见请求并提供预设响应,减少相似请求的处理量。
使用较小的模型:小型语言模型(SLMs)在某些用例中表现良好,并且成本较低。
使用路由模型:根据请求复杂度选择合适的模型,降低成本并确保性能。
11/ 带有MCP的AI代理
文本 & 代码:
https://github.com/microsoft/ai-agents-for-beginners/blob/main/11-mcp/
视频:无
扩展学习:
https://aka.ms/mcp-for-beginners
MCP 简介
Model Context Protocol (MCP) 是一个框架,用于标准化 AI 模型与客户端应用之间的交互。它提供了一致的接口,使得不同的 AI 模型实现在各种应用中都能够无缝运行。MCP 的关键方面包括:
标准化通信:MCP 为应用与 AI 模型之间的通信建立了统一的语言。
增强的上下文管理:高效地传递上下文信息给 AI 模型。
跨平台兼容性:支持多种编程语言,如 C#、Java、JavaScript、Python 和 TypeScript。
无缝集成:使开发人员可以轻松地将不同的 AI 模型集成到他们的应用中。
MCP 在 AI 代理开发中尤为有价值,因为它允许代理通过统一的协议与各种系统和数据源进行交互,从而使代理更加灵活和强大。
学习目标
理解什么是 MCP 及其在 AI 代理开发中的作用
设置和配置 MCP 服务器以进行 GitHub 集成
使用 MCP 工具构建多代理系统
使用 Azure Cognitive Search 实现 RAG(检索增强生成)
网友看法
谢谢分享,这绝对是最适合初学者的课程之一。他们最近也新增了MCP课程!
扩大普及的人工智能教育,有助于培养一个技术精湛、富有远见的社区。这是一项非常有价值的举措。
如今,了解人工智能代理的基础知识至关重要;这门课程可以成为许多人的坚实起点。
AI大模型的岗位与薪资
随着AI大模型技术的迅速发展,相关岗位的需求也日益增加。大模型产业链催生了一批高薪新职业:
- 算法工程师:负责模型训练优化,年薪普遍30-80万,顶尖人才可达百万;
- 提示词工程师:设计指令让大模型精准输出,月薪2-5万;
- 数据标注师:清洗训练数据,月薪0.8-1.5万;
- AI产品经理:对接技术与场景需求,年薪25-60万。
- CV工程师(视觉大模型):开发图像/视频理解模型(如Stable Diffusion),年薪25-60万;
- NLP工程师(语言大模型):优化文本生成逻辑,年薪30-80万;
- 机器学习架构师:设计分布式训练框架,年薪60-150万。
- 模型压缩工程师:把千亿模型“瘦身”到手机运行,年薪40-70万。
据某招聘网站数据,2024年大模型相关岗位数量同比暴涨230%,北京、深圳、杭州成为三大人才高地。
AI大模型的未来趋势
一方面,模型规模会越来越大,计算能力也会不断增强,这将进一步提升模型的表现。
另一方面,多模态学习将成为主流,即模型能够同时处理多种类型的数据,
如文本、图像、语音等,从而实现更广泛的应用场景。此外,随着AI伦理和隐私保护意识的增强,未来的AI大模型将更加注重数据安全和公平性。
总之,AI大模型不仅会在现有领域中继续发挥重要作用,还将开辟新的应用场景,推动各行各业的智能化升级。
这场AI革命堪比工业时代的蒸汽机,未来5年或将重塑80%的职业——与其担心被取代,不如成为驾驭浪潮的人。
如何高效转型AI大模型领域?
作为一名在一线互联网行业奋斗多年的老兵,我深知持续学习和进步的重要性,尤其是在复杂且深入的AI大模型开发领域。为什么精准学习如此关键?
•**系统的技术路线图:**帮助你从入门到精通,明确所需掌握的知识点。
•**高效有序的学习路径:**避免无效学习,节省时间,提升效率。
•**完整的知识体系:**建立系统的知识框架,为职业发展打下坚实基础。
适用人群广泛无论是初学者还是资深开发者,这份学习路线图都能助你事半功倍,快速提升技能,推动职业生涯的发展。免费领取完整版学习资料扫描下方二维码,免费领取【保证100%免费】!
AI大模型知识脑图
AI大模型精选书籍
AI大模型视频教程
AI大模型面试场景题
最后说一下
当前,AI大模型技术正推动各行业智能化转型。该教程通过"应用-开发-算法"三位一体的学习路径,帮助学习者系统掌握大模型核心技能。从工具使用到模型调优,七天集训聚焦真实业务场景的解决方案,完成从理论到实战的能力跨越。把握技术变革窗口期,这场高效学习将为你打开AI工程师的职业通道,赋能未来技术生涯的持续发展。