在人工智能领域,Model Context Protocol(MCP)正逐渐成为连接AI模型与各类数据源及工具的重要标准。MCP究竟为何物?它又将如何改变AI应用的开发与使用?
文章目录
-
- 0. 概念
- 1. MCP的总体架构
- 2. 为何使用MCP?
- 3. 我的理解
- 4. MCP的核心用途
- 5. 参考资料
0. 概念
MCP,即模型上下文协议,是一个开放的协议,旨在标准化应用程序向大型语言模型(LLMs)提供上下文的方式。可以将MCP比作AI应用的“USB-C接口”,就像USB-C为设备连接各种外设和配件提供了标准化方式一样,MCP为AI模型连接不同的数据源和工具提供了标准化的途径。
1. MCP的总体架构
MCP基于客户端-服务器架构,主机应用程序可以连接到多个服务器,其完整组成为:
-
MCP主机:如Claude Desktop、集成开发环境(IDEs)或AI工具,希望借助MCP访问数据;
-
MCP客户端:与服务器保持一对一连接的协议客户端;
-
MCP服务器:通过标准化的模型上下文协议暴露特定功能的轻量级程序;
-
本地数据源:计算机上的文件、数据库和服务,MCP服务器可安全访问;
-
远程服务:通过互联网(如API)可用的外部系统,MCP服务器能够连接。
其核心架构为:四层架构模型
-
协议层:负责消息的格式化与路由,核心组件包括:
- Protocol:定义消息序列化规则(基于JSON-RPC 2.0)
- Client:管理客户端状态机,处理请求/响应生命周期
- Server:实现资源、工具和提示的注册与调度
-
传输层:支持两种通信模式:
- Stdio(标准输入输出):通过管道实现进程间通信,典型应用场景是本地SQLite数据库连接(如uvx mcp-server-sqlite启动的服务器)
- SSE(服务器发送事件):基于HTTP长连接的双向通信,支持远程服务调用时的实时数据推送
2. 为何使用MCP?
MCP能够助力开发者基于LLMs构建智能代理和复杂的工作流程。在实际应用中,LLMs常常需要与数据和工具进行集成,而MCP提供了诸多优势:
- 一系列不断扩充的预构建集成,LLMs可直接接入;
- 灵活切换LLMs供应商和厂商的能力;
- 在基础设施内保护数据的最佳实践。
这项技术打破了传统的 AI 与本地环境之间的壁垒,让AI可以联网以查询数据库,可以作图甚至是直接操作电脑。
一个真实的场景来理解 MCP:你是一个数据分析师,每天需要处理大量的销售数据。以前,你需要先自己从数据库中提取数据,再把这些数据复制粘贴给 AI 进行分析。现在有了 MCP,你可以直接让 AI 连接数据库,自动完成数据提取和分析的全过程。
AI连接外部世界,怎么看着这么像AI使用工具tools,Function Calling等能力?
3. 我的理解
按我的理解,还是有区别的。
之前的tools也好,还是Function Calling也罢,这些东西我们想要调用,需要写一堆的适配代码,每个工具专门写一段。而MCP协议,帮助我们将调用工具的格式统一,新加一个工具时,只需要知道工具的名字和参数即可,不用再为这个工具写一堆的适配代码。
另外,现在我们使用工具分析数据时,是需要将数据上传到对话平台服务器上的,例如kimi阅读pdf,需要先将pdf添加到kimi的附件中,这就有数据泄漏风险了。
MCP协议让跨设备、跨网络等通信变得简单。现在只需要将阅读pdf的工具封装成一个MCP-Server,运行在本地,从其它地方连接这个MCP-Server就可以分析server所在机器上的pdf,不用上传云端,这期间还会有一堆的安全验证,安全性会提高很多。
4. MCP的核心用途
- 数据安全与隐私保护
MCP通过本地服务器与数据源建立双向连接,避免敏感数据上传至第三方平台。例如,用户可直接让Claude分析本地SQLite数据库中的财务数据,而无需将文件上传至云端。
- 扩展AI能力边界
MCP支持AI调用外部工具执行复杂操作,如自动生成图表、抓取网页内容、操作浏览器等。例如,通过Fetch工具,用户可让Claude抓取网页内容并转换为Markdown格式。
- 简化开发流程
开发者无需为每个数据源编写独立集成代码。例如,只需配置一个MCP服务器即可让AI同时访问本地文件、GitHub仓库和PostgreSQL数据库。
- 上下文感知与动态交互
MCP允许AI模型基于实时数据生成更精准的响应。例如,在分析斯坦福大学模拟招生数据库时,Claude不仅能查询结果,还能结合背景知识提供录取策略建议。
5. 参考资料
- 官方文档:https://docs.anthropic.com/zh-CN/docs/build-with-claude/mcp
那么,如何快速系统的去学习大模型LLM?
作为一名从业五年的资深大模型算法工程师,我经常会收到一些评论和私信,我是小白,学习大模型该从哪里入手呢?我自学没有方向怎么办?这个地方我不会啊。如果你也有类似的经历,一定要继续看下去!这些问题啊,也不是三言两语啊就能讲明白的。
所以我综合了大模型的所有知识点,给大家带来一套全网最全最细的大模型零基础教程。在做这套教程之前呢,我就曾放空大脑,以一个大模型小白的角度去重新解析它,采用基础知识和实战项目相结合的教学方式,历时3个月,终于完成了这样的课程,让你真正体会到什么是每一秒都在疯狂输出知识点。
由于篇幅有限,⚡️ 朋友们如果有需要全套 《2025全新制作的大模型全套资料》,扫码获取~
👉大模型学习指南+路线汇总👈
我们这套大模型资料呢,会从基础篇、进阶篇和项目实战篇等三大方面来讲解。
9周快速成为大模型工程师
第1周:基础入门
-
了解大模型基本概念与发展历程
-
学习Python编程基础与PyTorch/TensorFlow框架
-
掌握Transformer架构核心原理
-
第2周:数据处理与训练
-
学习数据清洗、标注与增强技术
-
掌握分布式训练与混合精度训练方法
-
实践小规模模型微调(如BERT/GPT-2)
第3周:模型架构深入
-
分析LLaMA、GPT等主流大模型结构
-
学习注意力机制优化技巧(如Flash Attention)
-
理解模型并行与流水线并行技术
第4周:预训练与微调
-
掌握全参数预训练与LoRA/QLoRA等高效微调方法
-
学习Prompt Engineering与指令微调
-
实践领域适配(如医疗/金融场景)
第5周:推理优化
-
学习模型量化(INT8/FP16)与剪枝技术
-
掌握vLLM/TensorRT等推理加速工具
-
部署模型到生产环境(FastAPI/Docker)
第6周:应用开发 - 构建RAG(检索增强生成)系统
-
开发Agent类应用(如AutoGPT)
-
实践多模态模型(如CLIP/Whisper)
第7周:安全与评估
-
学习大模型安全与对齐技术
-
掌握评估指标(BLEU/ROUGE/人工评测)
-
分析幻觉、偏见等常见问题
第8周:行业实战 - 参与Kaggle/天池大模型竞赛
- 复现最新论文(如Mixtral/Gemma)
- 企业级项目实战(客服/代码生成等)
第9周:前沿拓展
- 学习MoE、Long Context等前沿技术
- 探索AI Infra与MLOps体系
- 制定个人技术发展路线图
👉福利篇👈
最后呢,会给大家一个小福利,课程视频中的所有素材,有搭建AI开发环境资料包,还有学习计划表,几十上百G素材、电子书和课件等等,只要你能想到的素材,我这里几乎都有。我已经全部上传到CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费】