【Qwen2微调实战】Lora微调Qwen2-7B-Instruct实践指南_qwen2 lora


目录
  • 系列篇章💥
  • 引言
  • 1、简介
    • 1.1 Lora微调技术概述
    • 1.2 Qwen2-7B-Instruct模型简介
    • 2.2 Lora微调的优势
  • 2、技术
    • 2.1 Lora微调的工作原理
    • 2.3 Lora微调在Qwen2-7B-Instruct中的应用
  • 3、应用场景
    • 3.1 问答系统
    • 3.2 自动摘要生成
    • 3.3 指令执行
  • 4、代码实践
    • 4.1 环境准备
    • 4.2 安装依赖
    • 4.3 模型下载
    • 4.4 导入依赖包
    • 4.5 数据集准备
    • 4.6 数据加载查看
    • 4.7 加载分词器模型
    • 4.8 数据格式化处理
    • 4.9 加载模型
    • 4.10 lora配置
    • 4.11 配置训练参数
    • 4.12 模型训练
    • 4.13 模型合并
    • 4.14 模型推理
  • 结语

引言

在人工智能领域,自然语言处理(NLP)一直是研究的热点之一。随着深度学习技术的不断发展,大型预训练语言模型(如Qwen2-7B-Instruct)在理解与生成自然语言方面取得了显著的进展。然而,这些模型往往需要大量的计算资源和数据来进行微调,以适应特定的应用场景。Lora微调技术作为一种高效的模型优化手段,为解决这一问题提供了新的思路。本文将深入探讨Lora微调技术在Qwen2-7B-Instruct模型上的应用,旨在为读者提供一种高效、低成本的模型定制化方法。

1、简介

1.1 Lora微调技术概述

Lora微调是一种基于低秩矩阵的微调方法,它通过在模型的权重矩阵中引入低秩结构来减少参数数量,从而降低模型的存储和计算需求。这种方法在保持模型性能的同时,显著提高了模型的灵活性和适应性。

1.2 Qwen2-7B-Instruct模型简介

Qwen2-7B-Instruct,一款精心设计的高级预训练语言模型,拥有70亿参数,专注于提升对指令性文本的精准理解和高效生成。它在自然语言处理(NLP)的多个专业领域中,如文本摘要、情感分析、机器翻译等,均展现出了卓越的处理能力和适应性。Qwen2-7B-Instruct的先进性能不仅体现在其对语言的深度解析上,更在于其能够快速、准确地执行和回应复杂的语言指令,为专业级的语言任务提供了强大的支持和解决方案。

2.2 Lora微调的优势

与传统的全参数微调相比,Lora微调具有以下优势:

  • 参数减少:通过低秩分解,大幅减少了模型的参数量。
  • 计算效率:降低了模型训练和推理时的计算需求。
  • 灵活性:能够快速适应不同的应用场景。

2、技术

2.1 Lora微调的工作原理

Lora微调通过在模型的权重矩阵中引入低秩矩阵,实现了对模型的轻量级微调。具体来说,它将权重矩阵分解为两个较小的矩阵的乘积,这两个矩阵分别对应于原始权重矩阵的行和列。

2.3 Lora微调在Qwen2-7B-Instruct中的应用

通过在Qwen2-7B-Instruct模型上实施Lora微调技术,我们能够针对特定指令性文本任务进行精准优化,显著提升模型在这些任务上的表现力和准确性。这种微调方法不仅增强了模型对专业指令的响应能力,还进一步拓宽了其在复杂语言处理场景中的应用潜力。

3、应用场景

3.1 问答系统

Lora微调后的Qwen2-7B-Instruct可以用于构建更加智能的问答系统,提供更准确的答案。

3.2 自动摘要生成

在自动摘要生成任务中,微调后的模型能够更好地理解文本内容,生成更加精炼和准确的摘要。

3.3 指令执行

对于需要执行复杂指令的应用,如智能家居控制,微调后的模型能够更准确地解析和执行用户的指令。

4、代码实践

4.1 环境准备

介绍如何在Python环境中搭建Lora微调所需的环境,包括必要的库和依赖。
PyTorch: 2.1.0
CUDA:12.1
GPU:RTX 4090D(24GB)
Ubuntu 22.04.3 LTS

4.2 安装依赖

安装相关的依赖包

python -m pip install --upgrade pip
# 更换 pypi 源加速库的安装
pip config set global.index-url https://pypi.tuna.tsinghua.edu.cn/simple

pip install modelscope==1.9.5
pip install "transformers>=4.39.0"
pip install streamlit==1.24.0
pip install sentencepiece==0.1.99
pip install accelerate==0.27
pip install transformers_stream_generator==0.0.4
pip install datasets==2.18.0
pip install peft==0.10.0

# 可选
MAX_JOBS=8 pip install flash-attn --no-build-isolation 

4.3 模型下载

使用 modelscope 中的 snapshot_download 函数下载模型,第一个参数为模型名称,参数 cache_dir 为模型的下载路径。
在 /root/autodl-tmp 路径下新建 d.py 文件并在其中输入以下内容,粘贴代码后请及时保存文件,如下图所示。并运行 python /root/autodl-tmp/d.py 执行下载,模型大小为 15GB,下载模型大概需要 5 分钟。

import torch
from modelscope import snapshot_download, AutoModel, AutoTokenizer
import os
model_dir = snapshot_download('qwen/Qwen2-7B-Instruct', cache_dir='/root/autodl-tmp', revision='master')

下载成功如下:
在这里插入图片描述

4.4 导入依赖包

from datasets import Dataset
import pandas as pd
from transformers import AutoTokenizer, AutoModelForCausalLM, DataCollatorForSeq2Seq, TrainingArguments, Trainer, GenerationConfig

4.5 数据集准备

LLM 的微调一般指指令微调过程。所谓指令微调,是说我们使用的微调数据形如:
{
“instruction”:“回答以下用户问题,仅输出答案。”,
“input”:“1+1等于几?”,
“output”:“2”
}
其中,instruction 是用户指令,告知模型其需要完成的任务;input 是用户输入,是完成用户指令所必须的输入内容;output 是模型应该给出的输出。即我们的核心训练目标是让模型具有理解并遵循用户指令的能力。因此,在指令集构建时,我们应针对我们的目标任务,针对性构建任务指令集。下面是对话指令集部分内容:
在这里插入图片描述

4.6 数据加载查看

# 将JSON文件转换为CSV文件
df = pd.read_json('../dataset/huanhuan.json')
ds = Dataset.from_pandas(df)

查看前面5条

ds[:5]

输出

{'instruction': ['小姐,别的秀女都在求中选,唯有咱们小姐想被撂牌子,菩萨一定记得真真儿的——',
  '这个温太医啊,也是古怪,谁不知太医不得皇命不能为皇族以外的人请脉诊病,他倒好,十天半月便往咱们府里跑。',
  '嬛妹妹,刚刚我去府上请脉,听甄伯母说你来这里进香了。',
  '嬛妹妹,我虽是一介御医,俸禄微薄,可是我保证会一生一世对你好,疼爱你,保护你,永远事事以你为重。本来没半月一次到府上去请脉,能够偶尔见一次妹妹的笑靥,已经心满意足了,可谁知——而且我也知道,妹妹心里是不愿意去殿选的。',
  '实初虽然唐突了妹妹,却是真心实意地希望妹妹不要去应选,这不仅仅是因为我心里一直把妹妹当成……其实更是因为甄伯父曾经救过家父的性命。'],
 'input': ['', '', '', '', ''],
 'output': ['嘘——都说许愿说破是不灵的。',
  '你们俩话太多了,我该和温太医要一剂药,好好治治你们。',
  '出来走走,也是散心。',
  '实初哥哥这么说,就枉顾我们一直以来的兄妹情谊了,嬛儿没有哥哥,一直把你当作自己的亲哥哥一样看待,自然相信哥哥会待妹妹好的——自然了,以后有了嫂子,你也会对嫂子更好。',
  '我们两家是世交,昔年恩义不过是父亲随手之劳,不必挂怀。']}

4.7 加载分词器模型

加载本地的Qwen2-7B-Instruct模型

tokenizer = AutoTokenizer.from_pretrained('/root/autodl-tmp/qwen/Qwen2-7B-Instruct', use_fast=False, trust_remote_code=True)
tokenizer

输出:
在这里插入图片描述

4.8 数据格式化处理

Lora 训练的数据是需要经过格式化、编码之后再输入给模型进行训练的,我们一般需要将输入文本编码为 input_ids,将输出文本编码为 labels,编码之后的结果都是多维的向量。我们首先定义一个预处理函数,这个函数用于对每一个样本,编码其输入、输出文本并返回一个编码后的字典
1)定义处理函数

def process_func(example):
    MAX_LENGTH = 384    # Llama分词器会将一个中文字切分为多个token,因此需要放开一些最大长度,保证数据的完整性
    input_ids, attention_mask, labels = [], [], []
    instruction = tokenizer(f"<|im_start|>system\n现在你要扮演皇帝身边的女人--甄嬛<|im_end|>\n<|im_start|>user\n{example['instruction'] + example['input']}<|im_end|>\n<|im_start|>assistant\n", add_special_tokens=False)  # add_special_tokens 不在开头加 special_tokens
    response = tokenizer(f"{example['output']}", add_special_tokens=False)
    input_ids = instruction["input_ids"] + response["input_ids"] + [tokenizer.pad_token_id]
    attention_mask = instruction["attention_mask"] + response["attention_mask"] + [1]  # 因为eos token咱们也是要关注的所以 补充为1
    labels = [-100] * len(instruction["input_ids"]) + response["input_ids"] + [tokenizer.pad_token_id]  
    if len(input_ids) > MAX_LENGTH:  # 做一个截断
        input_ids = input_ids[:MAX_LENGTH]
        attention_mask = attention_mask[:MAX_LENGTH]
        labels = labels[:MAX_LENGTH]
    return {
        "input_ids": input_ids,
        "attention_mask": attention_mask,
        "labels": labels
    }

补充说明:Qwen2 采用的Prompt Template格式如下

<|im_start|>system
You are a helpful assistant.<|im_end|>
<|im_start|>user
你是谁?<|im_end|>
<|im_start|>assistant
我是一个有用的助手。<|im_end|>

2)数据集处理

tokenized_id = ds.map(process_func, remove_columns=ds.column_names)
tokenized_id

输出:

Dataset({
    features: ['input_ids', 'attention_mask', 'labels'],
    num_rows: 3729
})

3)查看input_ids数据格式是否正确

tokenizer.decode(tokenized_id[0]['input_ids'])

输出:

'<|im_start|>system\n现在你要扮演皇帝身边的女人--甄嬛<|im_end|>\n<|im_start|>user\n小姐,别的秀女都在求中选,唯有咱们小姐想被撂牌子,菩萨一定记得真真儿的——<|im_end|>\n<|im_start|>assistant\n嘘——都说许愿说破是不灵的。<|endoftext|>'

4)labels查看

tokenizer.decode(list(filter(lambda x: x != -100, tokenized_id[1]["labels"])))

输出:

'你们俩话太多了,我该和温太医要一剂药,好好治治你们。<|endoftext|>'

4.9 加载模型

加载本地的Qwen2-7B-Instruct模型

import torch

model = AutoModelForCausalLM.from_pretrained('/root/autodl-tmp/qwen/Qwen2-7B-Instruct', device_map="auto",torch_dtype=torch.bfloat16)
model

模型信息如下:

Loading checkpoint shards:   0%|          | 0/4 [00:00<?, ?it/s]
[9]:
Qwen2ForCausalLM(
  (model): Qwen2Model(
    (embed_tokens): Embedding(152064, 3584)
    (layers): ModuleList(
      (0-27): 28 x Qwen2DecoderLayer(
        (self_attn): Qwen2SdpaAttention(
          (q_proj): Linear(in_features=3584, out_features=3584, bias=True)
          (k_proj): Linear(in_features=3584, out_features=512, bias=True)
          (v_proj): Linear(in_features=3584, out_features=512, bias=True)
          (o_proj): Linear(in_features=3584, out_features=3584, bias=False)
          (rotary_emb): Qwen2RotaryEmbedding()
        )
        (mlp): Qwen2MLP(
          (gate_proj): Linear(in_features=3584, out_features=18944, bias=False)
          (up_proj): Linear(in_features=3584, out_features=18944, bias=False)
          (down_proj): Linear(in_features=18944, out_features=3584, bias=False)
          (act_fn): SiLU()
        )
        (input_layernorm): Qwen2RMSNorm()
        (post_attention_layernorm): Qwen2RMSNorm()
      )
    )
    (norm): Qwen2RMSNorm()
  )
  (lm_head): Linear(in_features=3584, out_features=152064, bias=False)
)

开启梯度检查,查看精度

model.enable_input_require_grads() # 开启梯度检查点时,要执行该方法
model.dtype # 查看精度

输出:
torch.bfloat16

4.10 lora配置

配置说明:
task_type:模型类型
target_modules:需要训练的模型层的名字,主要就是attention部分的层,不同的模型对应的层的名字不同,可以传入数组,也可以字符串,也可以正则表达式。
r:lora的秩,具体可以看Lora原理
lora_alpha:Lora alaph,具体作用参见 Lora 原理
Lora的缩放是啥嘞?就是lora_alpha/r, 在这个LoraConfig中缩放就是4倍。

from peft import LoraConfig, TaskType, get_peft_model

config = LoraConfig(
    task_type=TaskType.CAUSAL_LM, 
    target_modules=["q_proj", "k_proj", "v_proj", "o_proj", "gate_proj", "up_proj", "down_proj"],
    inference_mode=False, # 训练模式
    r=8, # Lora 秩
    lora_alpha=32, # Lora alaph,具体作用参见 Lora 原理
    lora_dropout=0.1# Dropout 比例
)
config

输出

LoraConfig(peft_type=<PeftType.LORA: 'LORA'>, auto_mapping=None, base_model_name_or_path=None, revision=None, task_type=<TaskType.CAUSAL_LM: 'CAUSAL_LM'>, inference_mode=False, r=8, target_modules={'o_proj', 'down_proj', 'q_proj', 'gate_proj', 'up_proj', 'k_proj', 'v_proj'}, lora_alpha=32, lora_dropout=0.1, fan_in_fan_out=False, bias='none', use_rslora=False, modules_to_save=None, init_lora_weights=True, layers_to_transform=None, layers_pattern=None, rank_pattern={}, alpha_pattern={}, megatron_config=None, megatron_core='megatron.core', loftq_config={}, use_dora=False, layer_replication=None)

加载lora配置

model = get_peft_model(model, config)
config

输出

LoraConfig(peft_type=<PeftType.LORA: 'LORA'>, auto_mapping=None, base_model_name_or_path='/root/autodl-tmp/qwen/Qwen2-7B-Instruct', revision=None, task_type=<TaskType.CAUSAL_LM: 'CAUSAL_LM'>, inference_mode=False, r=8, target_modules={'o_proj', 'down_proj', 'q_proj', 'gate_proj', 'up_proj', 'k_proj', 'v_proj'}, lora_alpha=32, lora_dropout=0.1, fan_in_fan_out=False, bias='none', use_rslora=False, modules_to_save=None, init_lora_weights=True, layers_to_transform=None, layers_pattern=None, rank_pattern={}, alpha_pattern={}, megatron_config=None, megatron_core='megatron.core', loftq_config={}, use_dora=False, layer_replication=None)

查看可训练参数

model.print_trainable_parameters()

4.11 配置训练参数

TrainingArguments这个类的源码也介绍了每个参数的具体作用,当然大家可以来自行探索,这里就简单说几个常用的。

output_dir:模型的输出路径
per_device_train_batch_size:顾名思义 batch_size
gradient_accumulation_steps: 梯度累加,如果你的显存比较小,那可以把 batch_size 设置小一点,梯度累加增大一些。
logging_steps:多少步,输出一次log
num_train_epochs:顾名思义 epoch
gradient_checkpointing:梯度检查,这个一旦开启,模型就必须执行model.enable_input_require_grads(),这个原理大家可以自行探索,这里就不细说了。

args = TrainingArguments(
    output_dir="./output/Qwen2_7B_instruct_lora",
    per_device_train_batch_size=4,
    gradient_accumulation_steps=4,
    logging_steps=10,
    num_train_epochs=3,
    save_steps=10, # 为了快速演示,这里设置10,建议你设置成100
    learning_rate=1e-4,
    save_on_each_node=True,
    gradient_checkpointing=True
)

4.12 模型训练

trainer = Trainer(
    model=model,
    args=args,
    train_dataset=tokenized_id,
    data_collator=DataCollatorForSeq2Seq(tokenizer=tokenizer, padding=True),
)
trainer.train()

训练效果:
在这里插入图片描述

4.13 模型合并

将训练后的lora权重加载到原来的模型中,形成新的模型

from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
from peft import PeftModel

mode_path = '/root/autodl-tmp/qwen/Qwen2-7B-Instruct/'
lora_path = './output/Qwen2_instruct_lora/checkpoint-10' # 这里改称你的 lora 输出对应 checkpoint 地址

# 加载tokenizer
tokenizer = AutoTokenizer.from_pretrained(mode_path, trust_remote_code=True)

# 加载模型
model = AutoModelForCausalLM.from_pretrained(mode_path, device_map="auto",torch_dtype=torch.bfloat16, trust_remote_code=True).eval()

# 加载lora权重
model = PeftModel.from_pretrained(model, model_id=lora_path)

4.14 模型推理

基于合并后(加载了lora权重)的模型进行推理

prompt = "你是谁?"
messages = [
    #{"role": "system", "content": "现在你要扮演皇帝身边的女人--甄嬛"},
    {"role": "user", "content": "假设你是皇帝身边的女人--甄嬛。"},
    {"role": "user", "content": prompt}
]
inputs = tokenizer.apply_chat_template(messages,add_generation_prompt=True,tokenize=True,return_tensors="pt",return_dict=True).to('cuda')

gen_kwargs = {"max_length": 2500, "do_sample": True, "top_k": 1}
with torch.no_grad():
    outputs = model.generate(**inputs, **gen_kwargs)
    outputs = outputs[:, inputs['input_ids'].shape[1]:]
    print(tokenizer.decode(outputs[0], skip_special_tokens=True))

输出:

我是甄嬛,家父是大理寺少卿甄远道。

结语

Lora微调技术为大型预训练语言模型的定制化提供了一种高效、低成本的解决方案。通过本文的介绍和代码实践,读者可以更好地理解Lora微调的原理和应用,将其应用于Qwen2-7B-Instruct模型,以满足特定场景的需求。随着技术的不断进步,我们期待Lora微调能够在更广泛的领域发挥更大的作用。

AI大模型学习路线

如果你对AI大模型入门感兴趣,那么你需要的话可以点击这里大模型重磅福利:入门进阶全套104G学习资源包免费分享!

微信扫描下方二维码获取哦!
在这里插入图片描述

这是一份大模型从零基础到进阶的学习路线大纲全览,小伙伴们记得点个收藏!

请添加图片描述
第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

100套AI大模型商业化落地方案

请添加图片描述

大模型全套视频教程

请添加图片描述

200本大模型PDF书籍

请添加图片描述

👉学会后的收获:👈

• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。

LLM面试题合集

请添加图片描述

大模型产品经理资源合集

请添加图片描述

大模型项目实战合集

请添加图片描述

👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

在这里插入图片描述

### 使用Qwen2VL-7B-Instruct模型与LoRA技术 为了展示如何使用Qwen2VL-7B-Instruct模型并应用LoRA微调技术,下面提供了一个详细的Python代码示例。此过程涉及加载预训练模型、初始化适配器以及执行微调操作。 #### 加载预训练模型 首先,需要通过`transformers`库来获取指定版本的Qwen2VL-7B-Instruct模型: ```python from transformers import AutoModelForCausalLM, AutoTokenizer model_name = "qwen/Qwen2VL-7B-Instruct" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained(model_name) ``` #### 初始化适配器 接着,利用`adapters`模块为上述模型配置特定任务所需的参数调整机制: ```python import adapters # 准备模型以支持适配器功能 adapters.init(model) # 添加一个新的LoRA适配器层到现有网络结构中 adapter_config = { 'lora_r': 8, 'lora_alpha': 16, 'lora_dropout': 0.1, } model.add_adapter('my_lora_adapter', config=adapter_config) model.train_adapter('my_lora_adapter') ``` #### 执行微调流程 完成以上准备工作之后,可以基于自定义数据集对模型实施进一步优化: ```python from datasets import load_dataset from transformers import TrainingArguments, Trainer dataset = load_dataset("path_to_your_custom_data") training_args = TrainingArguments( output_dir="./results", evaluation_strategy="epoch", learning_rate=5e-5, per_device_train_batch_size=4, per_device_eval_batch_size=4, num_train_epochs=3, weight_decay=0.01, ) trainer = Trainer( model=model, args=training_args, train_dataset=dataset['train'], eval_dataset=dataset['test'] ) trainer.train() ``` 这些步骤展示了如何有效地结合Qwen2VL-7B-Instruct模型和LoRA技术来进行高效而灵活的任务定制[^1]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值