📚 研究背景: 在数字化时代,电商平台如Amazon和Kuaishou等,通过结合搜索(Search)和推荐(Recommendation)服务,满足用户的多元化需求。推荐系统基于用户偏好推荐商品,而搜索服务则允许用户主动寻找特定商品。这两个服务的用户行为数据,为提高推荐系统的点击通过率(CTR)预测准确性提供了宝贵的机会。然而,现有方法往往忽视了用户在搜索和推荐领域间的意图转变,未能充分利用搜索查询中的用户偏好信息。
🔍 相关工作:
- 跨域推荐系统:通过共享用户或商品信息,增强目标领域的性能。
- 搜索与推荐联合学习:通过联合损失和共享项目信息,提高搜索和推荐领域的模型性能。
🧠 模型图输入输出转变:
上图:模型框架图示意
- 输入:用户在推荐域和搜索域的历史交互数据,包括用户点击的商品列表、搜索查询序列。
- 输出:预测用户在推荐域中点击特定商品的概率(CTR)。
🔧 方法介绍: 本研究提出的QueryRec框架,通过以下步骤实现CTR预测的增强:
- 查询序列编码:使用自注意力机制对搜索域中的用户查询序列进行编码。
-
具体来说,自注意力机制在这篇论文中的应用可以分解为以下几个步骤:
-
查询序列表示:
- 用户的搜索查询序列被表示为一系列的查询嵌入(query