爬虫封装的两种策略:函数式 vs 面向对象模块化的系统对比

在 Python 编写爬虫时,代码的结构设计直接影响到项目的可维护性、扩展性和开发效率。本文将从实际案例出发,对比两种主流封装方式:

  • 方式一: 函数式封装

  • 方式二: 面向对象 + 模块化封装

目录

一、函数式封装:适合初学者的轻量结构

二、模块化类封装:为扩展而生的工程级结构

三、结构对比总结

四、推荐使用建议

五、结束语:封装,是专业开发的起点


一、函数式封装:适合初学者的轻量结构

 结构特点:

线性函数式编程结构,将每一个步骤拆分为独立函数:

  • gen_url():生成目标链接

  • send_request():发送 HTTP 请求

  • parser_data():解析返回的 JSON 数据

  • save_data():存入 MongoDB(含去重逻辑)

  • main():作为主程序执行入口

优点:

  • 简洁直接,结构清晰

  • 学习门槛低,非常适合新手理解

  • 快速开发时非常高效

 缺点:

  • 可扩展性弱:比如需要加入代理池、日志记录、异步爬取等功能时,逻辑容易耦合在一起

  • 可复用性差:想要把这套逻辑迁移到其他项目中,需要大幅度复制粘贴和修改

  • 配置写死:如 headers、MongoDB 连接信息都硬编码在主文件中,不便修改和维护

示例代码:

import requests
import hashlib
import pymongo

# ========== MongoDB 初始化 ==========
client = pymongo.MongoClient(host="localhost", port=27017)
db = client['demo_database']

# ========== 请求头配置 ==========
headers = {
    "referer": "https://www.example.com/",#这个要替换成正确的网址
    "user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) Chrome/130.0.0.0 Safari/537.36",
    "x-requested-with": "XMLHttpRequest"
}

# ========== 1. 生成请
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值