rk3588调用NPU、查看npu的使用情况

1、rk3588启用NPU

启用三个内核->RKNNLite.NPU_CORE_0_1_2

rknn_lite = RKNNLite(verbose=False)
ret = rknn_lite.load_rknn(RKNN_MODEL)
ret = rknn_lite.init_runtime(core_mask=RKNNLite.NPU_CORE_0_1_2)

2、查看NPU使用情况:

watch sudo cat /sys/kernel/debug/rknpu/load

该命令将每两秒运行一次(默认),使用情况如下: 

 若需要查看当前npu使用情况,去掉watch!

每0.1秒运行一次:watch -n 0.01 sudo cat /sys/kernel/debug/rknpu/load

### Windows 11 NPU 加速配置 对于希望利用神经处理单元 (NPU) 进行加速计算的应用程序开发者而言,在 Windows 11 上设置和配置 NPU 支持涉及多个方面。具体来说,这通常依赖于硬件制造商所提供的驱动和支持库。 #### 安装必要的驱动程序 确保安装来自设备制造商的最新驱动程序是至关重要的。例如,如果使用的是带有集成 NPU 的特定处理器型号,则应访问该芯片组供应商网站下载并安装对应的驱动包[^1]。 #### 配置开发环境 为了能够在应用程序中有效调用 NPU 资源,可能还需要额外安装一些软件工具链或 SDK: - **Visual Studio**: 推荐版本为 Visual Studio 2019 或更高版本。 - **CMake**: 版本需兼容所选框架的要求。 - **Python**: 建议至少 Python 3.7 及以上版本用于脚本编写与测试目的。 针对像 Arm Compute Library 和 TensorFlow Lite 这样的机器学习框架,它们提供了优化过的函数集来充分利用 ARM 架构下的 CPU/GPU/NPU 性能特点。因此,在项目构建过程中应当考虑引入这些库的支持。 ```bash pip install tflite-runtime ``` 上述命令展示了如何通过 pip 工具快速获取 TensorFlow Lite 的运行时组件以便后续部署到目标平台之上。 #### 使用示例代码 下面给出了一段简单的 Python 代码片段作为演示,说明了加载模型文件以及执行推理的过程: ```python import tensorflow as tf interpreter = tf.lite.Interpreter(model_path="model.tflite") interpreter.allocate_tensors() input_details = interpreter.get_input_details() output_details = interpreter.get_output_details() # Prepare input data here... interpreter.set_tensor(input_details[0]['index'], input_data) interpreter.invoke() output_data = interpreter.get_tensor(output_details[0]['index']) ``` 这段代码适用于大多数基于 TFLite 模型的工作流程,并且可以很容易地移植至具备适当硬件加速能力的目标环境中去。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

笨小蛙

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值