RapidMiner介绍与实践(二)贝叶斯分类器

本文详细介绍了如何在RapidMiner中使用朴素贝叶斯分类器进行预测分析。首先阐述了朴素贝叶斯的原理,包括计算先验概率和条件概率,然后通过Golf数据集实际操作,展示了构建和运行贝叶斯分类器的步骤,并指出在RapidMiner中应用Laplace修正的重要性。虽然实验结果显示预测效果一般,但作者预告将在下篇中探讨K-means算法的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

前言

上一篇简要介绍了关于RapidMiner的简要介绍以及预测分析中决策树的小小实践。这次也是利用同样的数据集实现预测分析,最终看看预测效果如何。

朴素贝叶斯
原理

获取更多与结果Y相关的因素X信息。依本人理解,就是通过对目前已有条件X的理解分析(根据概率),来判断结果Y。

Step
  1. 计算各结果先验概率P(Y)
  2. 计算P(Xi|Y),即发生某结果前提下,因素(属性)为某数值的概率。
  3. 对每个结果都计算P(X|Yj)P(Yj)
  4. 选择P(X|Yj)P(Yj)值最大的结果为预测结果

来自网上资源
我们根据上一篇中数据集Golf中数据理解。

  1. 计算先验概率P(Yes)和P(No) 。
  2. 以outlook举例,计算P(overcast|Yes),P(rain|Yes),P(sunny|Yes)。计算P(overcast|No),P(rain|No),P(sunny|No)。同其他属性。
  3. 以outlook举例,计算P(Yes)P(overcast|Yes)P(rain|Yes)P(sunny|Yes)和P(No)P(overcast|No)P(rain|No)P(sunny|No)。同其他属性。
  4. 选择步骤3中最大的结果为预测结果。
RapidMiner实现贝叶斯分类器预测

数据:Sample中

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值