YOLOv8剪枝 稀疏训练+group_taylor剪枝测试精度仅掉0.5个点,速度提高6.5fps!

在这里插入图片描述

在这里插入图片描述

核心思想

传统的剪枝方法通常依赖权重大小来判断神经元的重要性,但作者质疑了这种假设。他们提出用神经元对最终损失的贡献来衡量重要性,并通过泰勒展开来近似计算这种贡献。

方法原理

重要性定义

对于参数 $w_m$,其重要性定义为移除该参数后损失的平方变化:
Im=∣E(D,W)−E(D,W∣wm=0)∣2I_m = |E(D, W) - E(D, W|w_m = 0)|^2I<

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

博导ai君

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值