云端部署大模型 ChatGLM3-6B

本文介绍了ChatGLM3-6B的语言模型,解释了为什么要将其部署在云端以利用丰富的计算资源、便利性及实时优化。作者分享了在DataWhale活动中的实践经验和学习收获,包括Git知识以及本地GPU部署的可能性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

ChatGLM3-6B是什么?

为什么要在云端部署?

效果如何?

有何学习收获?


ChatGLM3-6B是什么?

ChatGLM3-6B 是一个基于清华大学 KEG 实验室和智谱 AI 公司于2023年共同训练的语言模型 GLM3-6B 开发的人工智能助手。

为什么要在云端部署?

ChatGLM3-6B 是一个基于深度学习技术训练的语言模型,其训练过程需要大量的计算资源和存储空间,而且模型优化和更新也需要专业的人才进行。因此,将模型部署到云端可以解决计算资源和存储空间不足的问题,同时也可以方便地将模型部署到其他平台和设备上,提高模型的普适性和可扩展性。

在云端部署模型还可以通过云端服务提供商的计算和存储资源,对模型进行实时更新和优化,使得模型能够更好地适应用户的需求和场景的变化。此外,云端部署还可以为用户提供更加便捷和高效的使用体验,用户可以通过云端服务访问模型,无需将模型下载到本地设备上,提高了使用的效率和便捷性。

因此,将 ChatGLM3-6B 部署到云端是一种比较合理的选择,可以更好地满足用户的需求,并提高模型的性能和可靠性。

简而言之,如果本地的GPU资源比较丰富可以在本地部署,否则还是在云端部署会更加方便

效果如何?

以下是基于部署好的ChatGLM3-6B进行的一些对话:

### 如何使用 LLaMA-Factory 实现 ChatGLM3-6B 快速微调 为了实现对 ChatGLM3-6B 模型的快速微调,可以遵循以下方法: #### 准备工作 确保已经准备好所需的硬件资源,在阿里云上选择合适的云实例来保证 GPU 和内存能够满足模型训练的需求[^3]。 #### 安装依赖库 配置 Python 环境,并安装必要的依赖项,包括 `torch`、`transformers` 和 `LLaMA-Factory` 库。这可以通过 pip 或者 conda 来完成。 ```bash pip install torch transformers llama-factory ``` #### 数据准备 确保数据集的格式和质量满足微调需求。对于特定应用场景下的文本数据,应该先进行预处理操作,比如清洗、分词等,再将其转换成适合输入给模型的形式。之后将这些经过处理的数据上传至阿里云服务器以便后续访问[^2]。 #### 开始微调过程 在确认一切就绪后,可以在本地或云端启动微调脚本。这里给出一个简单的例子展示如何利用 LLaMA-Factory 中提供的工具来进行微调: ```python from transformers import AutoModelForCausalLM, AutoTokenizer import torch from datasets import load_dataset # 加载预训练模型与分词器 model_name_or_path = "path_to_chatglm3_6b" tokenizer = AutoTokenizer.from_pretrained(model_name_or_path) model = AutoModelForCausalLM.from_pretrained(model_name_or_path) # 载入自定义数据集 dataset = load_dataset('json', data_files={'train': 'data/train.json'}) def tokenize_function(examples): return tokenizer(examples['text'], padding="max_length", truncation=True) tokenized_datasets = dataset.map(tokenize_function, batched=True) # 设置训练参数 training_args = { "output_dir": "./results", "num_train_epochs": 3, "per_device_train_batch_size": 8, "save_steps": 10_000, "save_total_limit": 2, } # 执行微调流程 trainer = Trainer( model=model, args=TrainingArguments(**training_args), train_dataset=tokenized_datasets["train"], ) trainer.train() ``` 这段代码展示了加载预训练好的 ChatGLM3-6B 模型以及对应的分词器;接着读取 JSON 文件作为训练数据源,并对其进行编码处理;最后设置一些基本的训练选项并通过 Hugging Face 提供的 `Trainer` 类执行实际的微调任务。 #### 部署与测试 当微调完成后,可尝试部署新版本的模型用于生产环境中,同时也要记得对其性能进行全面评测以验证改进效果。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值