Kaggle入门——电影案例数据分析

本文介绍了在Kaggle上进行电影数据分析的步骤,包括数据集的介绍和下载,通过Python处理电影评分平均分和导演人数,以及数据可视化,特别探讨了电影分类的统计与可视化。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

数据集

1. 数据集介绍

本项目用到的数据集IMDB-Movie-Data是Kaggle平台上的项目TMDB(The Movie Database),主要为美国2006-2016年间的电影作品。

2. 数据集下载

在这里插入图片描述
下载地址
由于Kaggle平台是外网可能会出现下载较慢等问题,可以直接从下面下载
下载链接
提取码:MNSW

3. 导入数据

#文件的路径
path = "./data/IMDB-Movie-Data.csv"
#读取文件
movie = pd.read_csv(path)

数据基本信息

1. 数据集形状

在这里插入图片描述
在这里插入图片描述

问题1:如何获取电影数据中评分的平均分,导演的人数等信息

1. mean(a, axis, dtype)

在这里插入图片描述

  1. np.unique():去重
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值