【Pytorch】10.CIFAR10模型搭建

CIFAR10模型

torchvision中官方给出的一个数据集,可以通过

dataset = torchvision.datasets.CIFAR10('./data', train=False, download=True, transform=torchvision.transforms.ToTensor())

来下载到指定文件夹

搭建CIFAR10模型

首先我们先去搜一下CIFAR10 model structure
在这里插入图片描述
可以看到,模型的训练步骤为

  • 输入为3通道 32*32像素,通过5*5的卷积核进行卷积操作,得到32通道32*32像素
  • 进行2*2卷积核的最大池化操作变为32通道16*16像素
  • 进行5*5卷积核的卷积操作变为32通道16*16像素
  • 进行2*2卷积核的最大池化操作变为32通道8*8像素
  • 进行5*5卷积核的卷积操作变为64通道8*8像素
  • 进行2*2卷积核的最大池化操作变为64通道4*4像素
  • 进行Flatten全链接操作展开为1024长度
  • 通过线性激活变为64长度
  • 通过线性激活变为10长度
    然后我们就可以进行搭建了

首层卷积层

输入为3通道 32*32像素,通过5*5的卷积核进行卷积操作,得到32通道32*32像素
因为输入输出都是32*32像素,所以我们就需要根据官方给出的公式来计算一下padding为多少
在这里插入图片描述
其中padding为未知变量,dilation为默认值1,stride为默认值1,kernel_size为5
根据输入输出都为32可以求出,padding为2

所以我们的首层卷积为输入3通道,输出32通道,卷积核为5,padding为2

self.conv1 = nn
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值