theme: orange
本文正在参加「金石计划」
Embedding模型在许多应用场景中都有广泛的应用。在OpenAI中,文本嵌入技术主要用于衡量文本字符串之间的相关性。
什么是Embedding
嵌入(Embeddings)是一种将离散变量表示为连续向量的方法。它在机器学习中起到了不可或缺的作用。例如,在机器翻译中的词嵌入和分类变量中的实体嵌入都是嵌入的成功应用。
嵌入的本质是“压缩”,用较低维度的k维特征去描述有冗余信息的较高维度的n维特征,也可以叫用较低维度的k维空间去描述较高维度的n维空间。在思想上,与线性代数的主成分分析PCA,奇异值分解SVD异曲同工,事实上,PCA和SVD也可以叫做Embedding方法。
OpenAI 早先提供了第一代模型(在模型ID中用-001表示),包括text-similarity-davinci-001和davinci-001嵌入等等,而后在2022年12月将嵌入模型更新为text-embedding-ada-002(在模型ID中用-002表示)。新模型拥有较小的嵌入大小,新嵌入只有1536维,并且提供:
- 价格降低了90%-99.8%
- 嵌入维度大小减少了1/8,降低了向量数据库成本
- 端点统一,便于使用