HDOJ 5724 Chess (SG)

本文介绍了一种基于博弈论的编程问题解决方法,利用SG函数进行状态压缩,并通过动态规划的思想来解决游戏胜负判断的问题。文章提供了完整的C++代码实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题意

有n排列数为20的格子,有些行的有些格子放有棋子,每次可以把一个棋子向右移动一个格子,也可以从别的棋子上面跳过去,不能走的人即为输,判断这个人输赢。

思路

加深了一下对求SG表的记忆,其实就是类似DP的考虑当前状态可以通过一步变成什么子问题的状态,然后就求子问题中不存在的mex就行了。
这个题在算某个行的状态的时候把每一行状压一下然后枚举下一步的子问题就可以了。

代码

#include <stdio.h>
#include <string.h>
#include <iostream>
#include <algorithm>
#include <vector>
#include <queue>
#include <stack>
#include <set>
#include <map>
#include <string>
#include <math.h>
#include <stdlib.h>
#include <time.h>
using namespace std;
#define LL long long
#define Lowbit(x) ((x)&(-x))
#define lson l, mid, rt << 1
#define rson mid + 1, r, rt << 1|1
#define MP(a, b) make_pair(a, b)
const int INF = 0x3f3f3f3f;
const int MOD = 1000000007;
const int maxn = 1e5 + 10;
const double eps = 1e-8;
const double PI = acos(-1.0);
typedef pair<int, int> pii;

int vis[25];
int sg[1<<21];

void init(int x)
{
    memset(vis, 0, sizeof(vis));
    vis[1] = 0;
    for (int i = 20; i >= 0; i--) if (x & (1 << i))
    {
        for (int j = i - 1; j >= 0; j--) if (!(x & (1 << j)))
        {
            vis[sg[x ^ (1 << i) ^ (1 << j)]] = 1;
            break;
        }
    }
    for (int i = 0; ; i++) if (!vis[i])
    {
        sg[x] = i;
        break;
    }
}

int main()
{
    //freopen("in.txt","r",stdin);
    //freopen("out.txt","w",stdout);
    for (int i = 0; i < (1 << 20); i++)
        init(i);
    int T;
    scanf("%d", &T);
    while (T--)
    {
        int n, m, ans = 0;
        scanf("%d", &n);
        for (int i = 0; i < n; i++)
        {
            scanf("%d", &m);
            int status = 0, x;
            for (int j = 0; j < m; j++)
            {
                scanf("%d", &x);
                status |= 1 << (20 - x);
            }
            ans ^= sg[status];
        }
        puts(ans ? "YES" : "NO");
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值