Squeeze-and-Excitation Networks
CNN中最重要的就是卷积操作,卷积操作可以在每一层提取局部感受野(local receptive field)的空间和通道信息。之前的研究工作的主要集中在获取空间信息上,这片论文的工作集中在通道之间的信息。作者提出了 Squeeze-andExcitation(SE) 模块,该模块可以重新校准通道之间的权重,此模块可以附加在已有的网络上比如resnet等,额外计算量比较小,取得了很好的效果,取得了ImageNet2017分类任务的冠军。
SENet 网络结构
SE Block包含两个部分Sequeeze和Excitation:
- Squeeze:对 U ( C × H × W ) U(C\times H \times W) U(C×H×W)进行global pooling,得到