自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(97)
  • 收藏
  • 关注

原创 《AI Agent工程师(初级)》

考试重点有代码编程Agent模型的应用、医疗健康Agent模型的应用、教育办公Agent模型的应用、城市交通Agent模型的应用、搜索推荐Agent模型的应用、娱乐传媒Agent模型的应用、数字建模Agent模型的应用、空间具身Agent模型的应用、Midjourney工具实战操作、StableDiffusion-WebUI工具实战操作、StableDiffusion-ComfyUI工具实战操作、Flux工具实战操作、Deepseek模型本地化部署应用等。2、数字艺术、游戏设计、广告创意等行业从业者。

2025-08-04 17:43:19 342

原创 零代码实战:用ChatGPT Agent自动处理周报+会议纪要

AI Agent通过三大技术范式重构——基于Manus架构的智能闭环决策(规划-执行-复查)、MCP协议驱动的跨工具协同、以及动态熔断机制保障的安全合规——正在彻底重塑生产力边界。其核心价值在于实现从“人操作工具”到“AI托管任务”的质变:一方面通过云端异步运行、自主任务编排等能力将会议纪要生成等流程压缩90%耗时(实测5分钟完成原需90分钟的工作),另一方面以严格的数据隔离与操作熔断机制(如医疗场景的处方API拦截)保障高风险场景的可靠落地。

2025-07-26 10:00:00 743

原创 10分钟搭热点雷达!Dify+爬虫收割WAIC 800家企业新品流量

【AI驱动的热点营销新范式】头部玩家通过Selenium爬虫+动态反爬技术(如IP轮换、行为模拟)实时抓取WAIC等展会数据,结合Dify的NL2SQL技术自动生成三维技术图谱(如人形机器人赛道分析)。依托冲突性标题模板和视频基因重组技术,2分钟内可批量生产30篇跨平台内容,实现热点响应效率提升90倍。该方案已实现单日生成2300篇内容,引流成本降低60%,构建了从数据采集到流量转化的全自动闭环。

2025-07-22 11:39:45 1597

原创 从2小时压缩到10分钟,实测AI如何承包写稿→配图→排版→分发全流程​

从2小时压缩到10分钟,实测AI如何承包写稿→配图→排版→分发全流程

2025-07-19 10:00:00 1027

原创 技术平权真相:AI如何让普通人成为“技术合伙人”?

技术平权真相:AI如何让普通人成为“技术合伙人”?

2025-07-17 10:00:00 552

原创 零代码电影创作:GPT-4.1指令→RunwayML成片全流程教学

AI电影革命——重新定义创作门槛:对比传统短片制作(10万+/10天) vs AI制作(成本<1000元/周期5小时)

2025-07-15 10:00:00 1025

原创 AI教师上岗实录:DeepSeekR1如何重构课堂互动与个性化教学

AI教师上岗实录:DeepSeekR1如何重构课堂互动与个性化教学

2025-07-12 10:00:00 643

原创 DeepSeek开源代码库实战指南:5大模块构建企业级AI Agent

DeepSeek开源代码库实战指南:5大模块构建企业级AI Agent

2025-07-11 10:00:00 850

原创 零代码实战:用Coze+GPT-4.1搭建高转化电商客服Agent

“未来十年,不会用AI Agent的企业如同今日不会用智能手机的个体。” —— 通过Coze+GPT-4.1,将客服从成本中心转变为利润增长点,此刻即是起点。

2025-07-09 18:21:21 932

原创 为什么说AI智能体将取代80%的初级白领?

AI Agent工作流正在加速替代标准化白领岗位,日本三菱日联银行通过LangChain系统将企业客户分析从5.2小时缩短至4分钟,初级分析员需求减少70%。IMF数据显示全球40%岗位将受AI冲击,其中金融业AI渗透率已达39%。AI替代的核心机制包括:1)自动化68%可规则化的认知任务;2)动态决策能力超越固定流程;3)近乎零的边际成本优势。人类不可替代的20%能力集中于跨领域联想、伦理判断和创新突破。未来竞争力公式为:领域深度×跨学科联想力×AI工具掌控力。企业需构建"人机协作"新

2025-07-08 12:18:57 1063

原创 GPT5完全多模态架构拆解:实时视频生成如何颠覆内容创作

摘要:迪士尼宣布2026年推出首部AI主导电影,制作成本下降80%,其核心在于多模态AI的全栈能力。GPT-5作为关键技术,实现了文本、图像、音频、视频的联合理解与生成,通过跨模态对齐和动态记忆系统提升效率。采用稀疏混合专家架构(SMoE),按需调用专家模块,能耗降低60%以上。AI将内容产业从线性生产转变为实时生成,大幅降低成本并提升交互性,但也面临版权和创意同质化挑战。人类创作者的核心价值转向创意发起和情感塑造,AI则成为想象力的加速器。案例显示,医疗影像动态解说和电影特效实时生成已取得显著成效。

2025-07-07 17:04:19 1341

原创 快速理解AI Agent、Agentic AI和Multi Agent Systems之间的区别

AI Agent、Agentic AI和MultiAgent Systems的发展将带来深远的社会变革。它们将推动生产力的飞跃,提高生产效率和质量,但同时也可能引发就业结构的变化,对部分传统职业造成冲击。此外,随着AI技术的普及,伦理和隐私问题也将日益凸显,需要社会各界共同努力来加强监管和防范。

2025-06-10 11:47:33 628

原创 AI Agent工具全景解析:从Coze到RAGflow,探索智能体自动化未来!

AIAgent工具全景解析:从低代码开发到智能代理 随着AI技术在各行业的深入应用,AIAgent(人工智能代理)成为提升效率的关键工具。本文系统梳理了七类主流AIAgent平台的核心特性与适用场景: 低代码开发:Coze通过可视化拖拽实现轻量级智能体构建;Dify则专注企业级AI应用开发,强调安全性与扩展性。 流程自动化:n8n作为开源引擎,擅长跨系统任务编排与数据流转。 垂直领域工具:FastGPT聚焦高效文本生成,RAGflow专攻知识密集型任务。 智能代理进阶:AutoGPT具备自主任务分解能力,L

2025-05-28 12:29:50 919 1

原创 中国人工智能发展战略与个体发展机遇研究

人工智能作为引领新一轮科技革命和产业变革的战略性技术,正在深刻重塑全球经济格局和社会结构。第二十次集体学习明确提出了"坚持自立自强,突出应用导向"的发展战略,为中国人工智能的未来发展指明了方向。本文将从中国人工智能发展的现状与挑战、未来发展的战略方向、普通人面临的机遇与挑战以及如何在AI时代实现个人价值等四个维度,全面解析中国人工智能的发展路径,并为普通人提供切实可行的发展建议。通过辩证分析技术突破与伦理约束、自主创新与国际合作、产业升级与就业重构等多重关系,本文旨在帮助读者深入理解国家人工智

2025-04-29 17:00:21 1299 1

原创 Manus:一场关于Agent的降维打击

当硅谷巨头还在教AI吟诗作画时,中国团队已经训练出一个会做PPT、能筛简历、懂炒股的"数字牛马"!这可能是AI发展史上最"俗气"的革命——当ChatGPT用莎士比亚的腔调讨论存在主义哲学时,Manus正默默帮用户修改第18版年终总结;当Midjourney为生成完美的手指绞尽脑汁,这个来自东方的AI代理已经卷到连Excel表格配色都要符合Pantone年度流行色。我们正在见证人工智能的"祛魅时刻":曾经被神化为"人类智慧最后堡垒"的创意与执行领域,如今被一个能同时操控虚拟机、调用API、记忆用户偏好的数字生

2025-03-06 21:15:47 2218 1

原创 从DeepSeek的爆火来看大模型微调技术的发展方向

在人工智能历史上发展最快、离生产力最近的阶段,便是从2023年开始的这两三年。2023年初,大模型技术的迅猛发展席卷了各行各业,尤其是到了2025年春节期间,火遍全国的DeepSeek更是成为了家喻户晓的名字。毫不夸张地说,连扫大街的阿姨都在问:“DeepSeek是干啥的?”这种现象不仅反映了人工智能技术的普及,也体现了大模型对社会各阶层的深远影响。以DeepSeek为代表的各类大模型,正在国内政府机构、高校、企业中掀起一场浩浩荡荡的应用浪潮。

2025-02-23 16:01:49 957

原创 从春晚《秧BOT》来看人形机器人与四足机器人的区别

在能量效率与持久性方面,人形机器人为了实现复杂的动作和长时间的工作,通常需要更强大的动力系统和更高的能量消耗,尽管有研究致力于提高能效,但在某些应用场景中,能量管理仍然是一个挑战。至于感知与交互能力,人形机器人得益于丰富的传感器配置(如视觉、听觉、触觉),可以进行深度的人机交互,理解语言指令、识别人脸表情,并通过自然对话交流信息,成为客户服务、教育辅导以及家庭护理的理想选择。这类机器人的设计不仅考虑了外观上的拟人化,更重要的是在功能上模仿人类的行为能力,包括行走、跑步、上下楼梯等复杂动作。

2025-01-29 13:12:12 1142

原创 具身智能引领下的人形机器人的发展与展望

随着产品的不断迭代和技术成熟度的提高,人形机器人的应用场景正在从专业领域向更广泛的消费市场延伸。除了传统的工业和服务场景外,越来越多的家庭开始考虑引入家用型人形机器人来协助日常家务劳动或陪伴老人儿童;此外,在教育、娱乐等领域也有望看到更多创新性的应用出现。例如,一些学校已经开始尝试使用人形机器人作为编程教学工具,激发学生对科学技术的兴趣;而具备情感识别能力的机器人则可以为用户提供个性化的心理辅导和支持。

2025-01-16 18:19:41 1374

原创 图像分割技术综述(二)

不同于传统的目标检测或语义分割任务,SAM 的目标是提供一种通用的分割能力,能够根据用户的指示对图像中的任何对象进行分割,无论该对象是什么类型或是之前是否见过。利用来自不同传感器或成像模式的数据进行融合,可以提供更丰富的信息支持,增强分割结果的准确性和鲁棒性,预计这一领域将继续发展,并探索更多有效的融合策略。在 ASPP 模块的基础上,DeepLab v3+ 进一步增强了解码器部分,不仅结合了来自编码器的不同层次特征,还采用了更多的跳跃连接,使得模型能够在保持高效的同时生成更加精细的分割结果。

2024-12-13 15:21:46 1193

原创 图像分割技术综述(一)

图像分割是计算机视觉领域中的一个基本任务,旨在将图像划分为多个具有相似属性的区域。不同的图像分割方法适用于不同类型的图像和应用场景。实现图像分割的技术方法有很多,不同的技术实现方法有各自的特点,比如基于阈值的方法,通过选定阈值区分前景和背景;基于边缘检测的方法,通过识别图像中强度或颜色变化的边界来分割;基于区域的方法,通过区域生长、分裂或合并等策略捕捉相似特征的区域;基于图论的方法,将分割问题转化为图的最小割问题;基于聚类的方法,利用无监督学习自动发现数据分组;基于深度学习的方法,通过训练深层神经网络直接学

2024-11-27 15:11:27 1174

原创 从Hinton获得今年的诺贝尔物理学奖说起

可以说,在很多AI从业者的书架上,都能找到一本被翻阅得有些破旧的书籍——《深度学习》(Deep Learning),这本书是深度学习领域的重要参考文献之一,它详细介绍了深度学习的基本原理和技术实践,成为了许多技术人员的床头读物。随着技术的不断进步和社会的发展,人工智能将成为推动社会发展的重要力量,而学习和掌握这一领域的知识,也将为个人的职业生涯增添无限的可能性。他不仅推动了技术的发展,还激励了新一代科研人员,让他们相信,即使在不被看好的情况下,也应坚持自己的信念,直到世界追上自己的步伐。

2024-10-09 17:53:35 1476

原创 目标检测技术的发展:从R-CNN、YOLO到DETR、DINO

OV-DINO的出现标志着在开放域目标检测领域的重大进步,其在处理未见过的物体类别时的能力得到了显著提升。这项技术对于需要适应未知或变化环境的应用具有重要意义,如自动驾驶、机器人视觉、安防监控等。

2024-09-30 16:33:15 1977 1

原创 物体识别之微特征识别任务综述

这一领域面临的挑战是如何在提高识别精度的同时,应对复杂多变的环境因素,比如光照条件、遮挡问题以及动态环境下的识别难题。同时,如何通过技术手段有效防止欺诈行为也是一个重要的课题。在电商领域,推荐系统可能需要分析商品的图片来识别产品的样式、颜色等属性,同时也要考虑用户留下的评价文本,从中提取情感倾向和具体的反馈信息。有些分类识别任务可能会同时涉及多种类型的数据,包括图像、视频和文本等,这样的复杂任务要求系统不仅要具备处理单一类型数据的能力,还需要能够综合分析多种数据源的信息,以达到更准确和全面的结果。

2024-09-14 18:13:12 2228

原创 目标检测之困难目标检测任务综述

在困难目标检测领域,常用的评估数据集包括COCO和PASCAL VOC等,这些数据集不仅提供了丰富的训练和测试样本,还特别支持对小目标、遮挡目标、模糊目标等困难目标的检测评估。数据增强增加了模型的鲁棒性,模型架构改进提高了模型的表达能力和泛化能力,先进的后处理技术优化了最终的检测结果,特征融合增强了模型对不同大小和形状目标的识别能力,上下文建模帮助模型更好地理解目标所在的场景,多模态信息融合提供了更多的线索,帮助模型更好地识别目标。这导致了特征信息的缺失,使得传统的特征提取方法难以有效地捕捉到足够的细节。

2024-08-27 19:11:08 2300 2

原创 目标检测研究方向——开放域目标检测

训练完成后,模型仅能识别训练数据中出现过的类别。从模型能力上看,在封闭域目标检测中,模型被设计为只识别训练时提供的预定义类别,并且假设测试图像中只会出现这些已知类别,模型通过大量的训练数据来学习这些预定义类别的特征,并进行优化,确保在这些类别的识别上达到最佳效果;相比之下,开放域目标检测要求模型不仅要能够识别训练时提供的已知类别,还需要能够处理在测试数据中可能出现的未知类别,模型需要具备较强的泛化能力,能够在面对未知类别时做出合理的响应,如识别出这是一个未知类别,而不是错误地将其归类为一个已知类别。

2024-08-10 11:52:18 1521

原创 神经网络新范式——LNDP:可终身学习的自主发育程序

LNDP使得人工神经网络能够以活动和奖励依赖的方式实现突触和结构的可塑性,并桥接了间接发育编码(indirect developmental encoding)和元学习的可塑性规则,并提出了Evolving Self-Assembling Neural Networks(进化自组装网络)。这意味着神经网络终于可以根据具体任务进行自主连接和生长发育了,而非以往固定的、静态的、完全连接的方式。

2024-07-24 16:38:39 1715 4

原创 2024高考作文引发的人工智能争议

他们建议,高考作文命题应当引导学生批判性地分析人工智能技术的社会影响,探讨如何实现技术进步与人类福祉的和谐共生,如何在享受科技便利的同时,加强人工智能的安全管理与伦理规范,以规避潜在的灾难性后果,确保人工智能的未来真正掌握在人类手中,促进社会的可持续发展。因此,这一作文命题的设置,实质上是对学生的一种警醒,也是对教育方向的一种提示:在技术快速迭代的今天,如何在享受技术便利的同时,培养和维护个体的深度思考能力,保持对知识的渴望和对未知的好奇心,是每个人都应认真思考的问题。

2024-06-07 23:07:19 1716

原创 扩散模型的技术原理和应用价值

在物理和材料科学研究中,扩散模型被用来预测和优化材料的性质,如通过模拟“炼金”过程,快速探索新材料的合成路径,特别是对于复杂体系,其预测的准确性与速度优势将更加凸显。通过连续的噪声注入步骤,模型学习了如何从一个复杂的数据分布出发,通过一系列确定性的转换,最终达到一个简单的已知分布(高斯噪声分布),这一过程为后续的反向扩散学习提供了基础。通过上面的应用场景可以看出,扩散模型在增强语言模型的多样性方面,不仅能够提升内容的创新性和吸引力,还能促进个性化和定制化内容的生成,为自然语言处理技术带来更广阔的应用空间。

2024-06-03 16:47:08 1394

原创 全面解析OpenAI的新作——GPT-4o

GPT-4o作为GPT-4级智能的集大成者,其无与伦比的性能和多模态交互能力,标志着AI技术已经跨过了单纯的文字理解与生成,迈向了一个能理解、回应乃至预测用户多维度需求的新阶段,真正意义上做到了智能服务的全民触达。此外,GPT-4o的远程协助能力也得到了充分展示。一位模拟工程师提出一个复杂的算法优化问题,GPT-4o不仅迅速提供了多条可行的解决方案,而且还自动生成了一段简洁明了的代码示例,并通过内置的代码解释器,以易于理解的语言向在场观众阐述了每行代码的功能与逻辑,这一过程仅仅耗时几秒钟。

2024-05-14 18:08:44 1675 1

原创 自回归模型的优缺点及改进方向

在学术界和人工智能产业中,关于自回归模型的演进与应用一直是一个引发深入讨论和多方观点交锋的热门议题。尤其是Yann LeCun,这位享誉全球的AI领域学者、图灵奖的获得者,以及被誉为人工智能领域的三大巨擘之一,他对于自回归模型持有独特的批判视角。值得注意的是,自回归模型作为基础架构,支撑着当前备受瞩目的GPT系列大型语言模型(LLMs)的学习与预测机制,这些模型在自然语言处理领域展现出了革命性的影响力。LeCun教授不仅在其专业领域内享有崇高的声望,而且以其敏锐的洞察力和直言不讳的态度著称。

2024-05-11 12:58:53 2336

原创 探讨自回归模型和扩散模型的发展应用

为提高模型效率,研究者提出了多种快速采样算法,如DDIM(离散扩散模型)和ADM(加速扩散模型),这些方法能够在保证生成质量的前提下,显著减少反向扩散所需的步骤数,从而大幅缩短生成时间。此外,还出现了如半扩散模型这样的新型架构,它结合了扩散模型与传统生成模型的优点,能够在更低的计算成本下生成高质量样本。例如,在音乐创作场景中,一个混合模型可以先根据用户提供的旋律片段或风格标签进行自回归式的后续旋律生成,再通过扩散过程优化生成音乐的质量和细节,确保生成的乐曲既符合用户预期又具有专业级音质。

2024-04-24 13:22:14 2317

原创 人工智能时代创作者的抗议!

随着AI替代工具的广泛应用,来自各行各业的反对声音会越来越多,无论是作家群体对人工智能写作可能取代人文创作的忧虑,还是作曲家们对AI谱曲可能削弱音乐原创性与个性表达的异议,甚至是影视行业对AI剪辑和生成内容可能颠覆传统创作模式的警惕,这些抗议的核心动机都指向一个共通点:人类在捍卫自身的劳动成果与职业尊严,力求保护长期以来在各自领域积累的智力产权与精神财富。至于音乐创作,则常常源自生活中的点滴声响,那些无意间捕捉到的旋律、节奏、情感波动,经过艺术家内心的体验和匠心独运的编排,得以转化为美妙的音乐篇章。

2024-04-12 19:13:21 898

原创 「他山之石」:大模型时代的“小模型”

拿RTX 4060 Ti显卡为例,该系列推出了8GB和16GB不同显存容量的版本,对于参数量较大的模型,特别是20亿参数等级的模型,16GB显存版本无疑提供了更为宽裕的工作空间,这对于入门级和中级人工智能项目,如涉及大规模模型训练、复杂图像渲染或是高性能计算密集型应用,都能够提供必要的显存支持。这些模型都是在2024年发布的。然而,这样的策略也带来了一个悖论:若大幅度削减大模型的参数量以适应有限的计算资源,那么理论上讲,其原有的规模优势和丰富的表达能力将会削弱,从严格定义上可能就不再符合“大模型”的标准。

2024-03-25 18:31:14 1194

原创 AI通识教育:可能是我们领先于世界AI的关键

这一课程的开设和发展,对人工智能教育的普及和专业人才的培养起到了积极推动作用,它不仅有助于提升学员对人工智能的认知水平,更是在一定程度上弥补了当前市场上对具备理论素养和实战能力双重特质的人工智能专业人才的巨大需求。但实际上,这种认知存在明显的局限性。其目标是通过这样的教育,使公众及各类专业背景的学习者能够理解人工智能的基本概念,掌握一定的AI技术素养,对于AI的发展,既不狂热吹捧,也不恐惧抗拒,能理性看待AI在日常生活、工作和社会发展中的作用和影响,培养具备跨学科视野和适应未来智能化社会所需的基本能力。

2024-03-04 14:01:48 1391

原创 Sora:继ChatGPT之后,OpenAI的又一力作

Sora生成的视频呈现出的是大片既视感,无论是镜头变化,还是光影色彩的转变,以及细微到纹理结构的变化,都呈现出了专业摄影师级别的效果;根据OpenAI的介绍和愿景,Sora不只是一个简单的视频生成工具,而是一个能够改变时代的“世界模型”,Sora的开发工程师表示,Sora通过观察大量数据,可以学会许多关于世界的物理规律,这可以被用来模拟真实世界中的事件发生时的状况,比如智能机器人,自动驾驶等。最终发现,在具有高度描述性视频字幕的训练中,不仅可以提高文本的忠实度,还可以提升整体视频的质量。

2024-02-17 00:32:10 1862

原创 大模型基础架构的变革:剖析Transformer的挑战者(下)

目前业内对将LLM应用于长文本进行了广泛的研究,主要关注三个领域:长度外推、上下文窗口扩展,以及提高LLM对长文本的利用。.长度外推的目的是使在较短文本上训练的语言模型能够在测试过程中处理较长的文本。一个主要的研究途径是开发Transformer模型的相对位置编码方法,使它们能够在训练窗口之外发挥作用。上下文窗口扩展集中于扩展LLM的上下文窗口,允许在一次向前传递中处理更多的token。一个主要的工作方向是解决训练效率的问题。考虑到Transformer在训练过程中存在对注意力计算随token增长的

2024-02-09 17:33:31 1366

原创 大模型基础架构的变革:剖析Transformer的挑战者(中)

上一篇文章中,我们介绍了RetNet、RWKV、Mamba等有可能会替代Transformer的模型架构,这一篇文章我们将要介绍另外三个有可能会替代Transformer的模型架构,它们分别是UniRepLKNet、StripedHyena、PanGu-π,想了解之前的内容,请前往《》一文查阅。

2024-02-01 11:53:00 1639

原创 大模型基础架构的变革:剖析Transformer的挑战者(上)

随着大模型在应用层面的发展,支撑大模型的底层架构模型Transformer所存在的各种问题也逐渐显现,业内一直都在寻找Transformer框架的替代方法。有在原Transformer架构基础上微调改良的,也有采用传统RNN模型的思想的架构,还有以CNN为基础模型的架构,更有将Transformer和其他RNN、CNN架构结合的混合架构模型。无论模型如何变化,目的都是为了更高效地完成任务。目前的大模型的基础架构改良和重设计,都是在三大基础架构之上进行的革新,即。

2024-01-22 17:36:17 1593

原创 2024,AI Agent的密集爆发之年

这样可以节省用户的时间,让用户有更多的时间去处理更重要的事情。Apple Vision Pro为了实现用户的导航需求和与空间内容的交互,引入了一种全新的输入系统,这种设计,使得用户的操作更加直观和便捷。C端市场也是真正的造富矿场,纵观全球高市值公司无一例外都是C端市场,而C端市场的用户也最挑剔,因为C端面向的是不同的个体,想要将不同个体的需求爱好统一,确实很难,但是正因为如此,优质的产品研发公司才会真正致力于为人类发展而奋斗,开发出每个人都喜欢的产品,2024年注定是AI Agent激烈竞争的开始。

2024-01-11 20:14:37 1278

原创 Transformer架构的局限已凸显,被取代还有多久?

江山代有才人出,各领风骚数百年。这句话无论是放在古往今来的人类身上,还是放在当今人工智能领域的大模型之上,都是最贴切不过的。无论是一个时代的伟人,还是统治一个领域的技术,最终都会有新的挑战者将其替代。Transformer作为大模型的统治者,自从出现之后,就以其强大的语言理解能力击败了RNN模型,迅速占据了NLP领域的榜首,之后又是抢占了CNN主导的图像领域,成为了整个领域的王者,在之后很长一段时间内地位都稳固如初。

2024-01-09 17:32:49 1644

TG-2024-11-05-164217524.mp4

TG-2024-11-05-164217524.mp4

2024-11-05

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除