目标检测(二阶段)领域,常见词汇

1、Backbone(主干网络)
  • 定义: Backbone是目标检测模型的基础部分,通常是一个预训练的卷积神经网络(如ResNet、VGG、MobileNet等),负责从输入图像中提取多层特征图。这些特征图包含了不同尺度和抽象级别的信息,是后续步骤进行目标定位和识别的基础。
  • 作用: 提供丰富的特征表示,是整个模型的基础。
2、Neck(颈部网络)
  • 定义: Neck 通常位于 Backbone 和检测头(Head)之间,用于进一步处理或增强特征图。它可以帮助模型更好地理解图像内容。Neck可以包含多种模块,如特征金字塔网络(FPN)、SPP(Spatial Pyramid Pooling)、ASPP(Atrous Spatial Pyramid Pooling)等,用于优化特征表示。
  • 作用: 增强特征的表达能力,提高检测性能。
    • 2.1 FPN(特征金字塔网络)
      • 定义: FPN是一种特殊的Neck结构,它通过自顶向下和自底向上的路径聚合不同尺度的特征图,创建一个丰富的多尺度特征金字塔。这样做的目的是让每个层级的特征都能同时具备高语义信息和精确的空间位置信息,从而提高小物体的检测能力。
      • 作用: 处理多
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值