OpenCV 【五】————人脸识别/人眼识别haar

本文介绍使用OpenCV进行图像预处理,包括灰度转换、直方图均衡化及人脸检测的应用。通过加载图像、转换为灰度图并进行直方图均衡化增强对比度,然后利用级联分类器检测图像中的人脸区域。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

#include <opencv2/core/core.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <opencv2/imgproc/imgproc.hpp>
#include <opencv2/video/background_segm.hpp>
#include "opencv2/calib3d/calib3d.hpp"
#include <opencv2/opencv.hpp>


using namespace std;
using namespace cv;
RNG rng;

int main(int argc, char** argv) {
	cv::Mat temp_thin_color = cv::imread("../example/93.jpg", CV_LOAD_IMAGE_UNCHANGED);
	cv::Mat temp_thin_image_color, gray_image_color, equalize_image_color;
	temp_thin_color.convertTo(temp_thin_image_color, CV_8UC1, 1, 0);

	cv::cvtColor(temp_thin_image_color, gray_image_color, CV_RGB2GRAY);
	cv::imshow("gray_image_color", gray_image_color);

	cv::equalizeHist(gray_image_color, equalize_image_color);	
	cv::imshow("equalize_image_color", equalize_image_color);

	std::vector<cv::Rect> objs;
	cv::CascadeClassifier objDetector("../haarcascades/haarcascade_frontalface_alt2.xml");
	objDetector.detectMultiScale(equalize_image_color, objs, 1.2, 2, CV_HAAR_SCALE_IMAGE, cv::Size(30, 30));

	std::vector<cv::Rect>::const_iterator it = objs.begin();
	for (; it != objs.end(); ++it) {
		rectangle(gray_image_color, cv::Point(it->x, it->y),cv::Point(it->x + it->width, it->y + it->height),cv::Scalar(0, 255, 0), 2, CV_AA);

		std::cout << it->x << " " << it->y << " " << it->width << " " << it->height << std::endl;

		cv::Mat roi_image_color = temp_thin_image_color(cv::Rect(it->x, it->y, it->width, it->height));
		cv::imshow("roi_image_color", roi_image_color);
	}

	cv::waitKey(0);
	return 0;
}

终极那结果:

 

识别结果:108 177 335 335

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

大江东去浪淘尽千古风流人物

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值